Распределение Стьюдента

Материал из MachineLearning.

Перейти к: навигация, поиск
Распределение Стьюдента
Плотность вероятности
Функция распределения
Параметры n > 0\! - число степеней свободы
Носитель x \in (-\infty; +\infty)\!
Плотность вероятности \frac{\Gamma((n+1)/2)} {\sqrt{n\pi}\,\Gamma(n/2)\,(1+x^2/n)^{(n+1)/2}}\!
Функция распределения \frac{1}{2} + \frac{x \Gamma \left( (n+1)/2 \right)}{\sqrt{\pi n}\,\Gamma (n/2)} \frac{\,_2F_1 \left ( \frac{1}{2},(n+1)/2;\frac{3}{2};-\frac{x^2}{n} \right)} {\sqrt{\pi n}\,\Gamma (n/2)} где \,_2F_1 - гипергеометрическая функция
Математическое ожидание 0
Медиана 0
Мода 0
Дисперсия \frac{n}{n-2}\! если n>2
Коэффициент асимметрии 0 если n>3
Коэффициент эксцесса \frac{3n - 6}{n-4}\! где n>4
Информационная энтропия \frac{n+1}{2}\left[\psi(\frac{1+n}{2})- \psi(\frac{n}{2})\right] + \log{\left[\sqrt{n}B(\frac{n}{2},\frac{1}{2})\right]}
Производящая функция моментов не определена
Характеристическая функция


Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений.

Содержание

Определение

Пусть Y_0,Y_1,\ldots, Y_nнезависимые стандартные нормальные случайные величины, такие что Y_i \sim \mathrm{N}(0,1),\; i=1,\ldots, n. Тогда распределение случайной величины t, где

t = \frac{Y_0}{\sqrt{\frac{1}{n}\sum\limits_{i=1}^n Y_i^2}}

называется распределением Стьюдента с n степенями свободы. Пишут t \sim \mathrm{t}(n). Её распределение абсолютно непрерывно и имеет плотность

f_t(y) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \, \Gamma\left(\frac{n}{2}\right)}\, \left(1+\frac{y^2}{n}\right)^{-\frac{n+1}{2}},

где \Gammaгамма-функция Эйлера.

Свойства распределения Стьюдента

  • Распределение Стьюдента симметрично. В частности если t \sim \mathrm{t}(n), то
-t \sim \mathrm{t}(n).

Моменты

Случайная величина t \sim \mathrm{t}(n) имеет только моменты порядков k < n, причём

\mathbb{E}\left[t^k\right] = 0, если k нечётно;
\mathbb{E}\left[t^k\right] = \frac{\Gamma(\frac{k+1}{2})\Gamma(\frac{n-k}{2})n^{k/2}}{\sqrt{\pi}\Gamma(\frac{n}{2})} , если k чётно.

В частности,

\mathbb{E}[t] = 0,
\mathrm{D}[t] = {n \over n - 2}, если n > 2 .

Моменты порядков k \ge n не определены.

Связь с другими распределениями

\mathrm{t}(1) \equiv \mathrm{C}(0,1) .
  • Распределение Стьюдента сходится к стандартному нормальному при n \to \infty. Пусть дана последовательность случайных величин \{t_n\}_{n=1}^{\infty}, где t_n \sim \mathrm{t}(n),\; n \in \mathbb{N}. Тогда
t_n \to \mathrm{N}(0,1) по распределению при n \to \infty.
t^2 \sim \mathrm{F}(0,n).
  • Представление распределения Стьюдента в виде бесконечной смеси Гауссиан:
Пусть x \sim \mathrm{t}(x | n, \mu, \sigma^2) \propto (1 + \frac{1}{n} \left( \frac{x - \mu}{\sigma} \right)^2 )^{-\frac{n + 1}{2}}. Тогда:
x \sim t(x | n, \mu, \sigma^2) = \int\limits_{-\infty}^{+\infty} \mathrm{N}(x | \mu, \frac{\sigma^2}{\lambda})\mathrm{G}(\lambda | \frac{n}{2}, \frac{n}{2}) \:\textrm{d}\lambda

Применение распределения Стьюдента

Распределение Стьюдента используется в статистике для точечного оценивания, построения доверительных интервалов и тестирования гипотез, касающихся неизвестного среднего статистической выборки из нормального распределения. В частности, пусть X_1,\ldots, X_n независимые случайные величины, такие что X_i \sim \mathrm{N}(\mu, \sigma^2),\; i=1,\ldots, n. Обозначим \bar{X} выборочное среднее этой выборки, а S^2 выборочную оценку её дисперсии. Тогда

\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim \mathrm{t}(n-1).
Личные инструменты