Критерий Шапиро-Уилка

Материал из MachineLearning.

Версия от 06:58, 12 ноября 2008; Дорофеев Н.Ю. (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Критерий Шапиро-Уилка используется для проверки гипотезы гипотезу H_0: „случайная величина X распределена нормально“ и является одним наиболее эффективных критериев проверки нормальности. Критери, проверяющие нормальность выборки, являются частным случаем критериев согласия. Если выборка нормальна можно далее применять мощные параметричексие критерии, например, критерий Фишера.

Содержание

[убрать]

Описание Критерия

Критерий Шапиро-Уилка основан на оптимальной линейной несмещённой оценке дисперсии к её обычной оценке методом максимального правдоподобия. Статистика критерия имеет вид:

W=frac{1}{s^2}[\sum_{i=1}^k a_{n-i+1} (x_{n-i+1} -x_i)]^2,

где s^2=\sum_{i=1}^n (x_i -\overline{x})^2, \overline{x}=[\frac{1}{n}\sum_{i=1}^n x_i.

Числитель является квадратом оценки среднеквадратического отклонения Ллойда.

Критерий Шапиро-Франча

См. также

Ссылки

Литература

Статья в настоящий момент дорабатывается.
Дорофеев Н.Ю. 09:58, 12 ноября 2008 (MSK)


Личные инструменты