Системы искусственного интеллекта (курс лекций, Д.В.Михайлов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 55: Строка 55:
* Отбор фраз текстового корпуса, максимально релевантных исходной:
* Отбор фраз текстового корпуса, максимально релевантных исходной:
-
** [http://www.novsu.ru/file/1146133 на основе TF-IDF её слов]<ref name="compopt2015">''Михайлов Д. В., Козлов А. П., Емельянов Г. М.'' [http://www.computeroptics.smr.ru/KO/PDF/KO39-3/390319.pdf Выделение знаний и языковых форм их выражения на множестве тематических текстов: подход на основе меры TF-IDF] // Компьютерная оптика. — 2015. — Т. 39, №3. — С. 429–438.</ref>;
+
** [http://www.novsu.ru/file/1146133 на основе TF-IDF её слов]<ref>''Михайлов Д. В., Козлов А. П., Емельянов Г. М.'' [http://www.computeroptics.smr.ru/KO/PDF/KO39-3/390319.pdf Выделение знаний и языковых форм их выражения на множестве тематических текстов: подход на основе меры TF-IDF] // Компьютерная оптика. — 2015. — Т. 39, №3. — С. 429–438.</ref>;
** [http://www.novsu.ru/file/1195999 с привлечением базы синтаксических правил на основе численной оценки силы связи слов исходной фразы];
** [http://www.novsu.ru/file/1195999 с привлечением базы синтаксических правил на основе численной оценки силы связи слов исходной фразы];
** [http://www.novsu.ru/file/1229881 анализом n-грамм на найденных синтаксических связях слов исходной фразы].
** [http://www.novsu.ru/file/1229881 анализом n-грамм на найденных синтаксических связях слов исходной фразы].

Версия 10:19, 7 февраля 2020

Дисциплина «Системы искусственного интеллекта» для специальности 230105 важную роль в подготовке студентов к самостоятельной профессиональной деятельности в области интеллектуальных информационных технологий. Дисциплина «Системы искусственного интеллекта» для специальности 230105 относится к числу дисциплин специализации и читается в 9-м семестре. Она включает в себя рассмотрение основных вопросов современной теории и практики построения интеллектуальных систем (в первую очередь) символьной обработки и опирается на учебные курсы :«Дискретная математика», «Функциональное и логическое программирование», «Объектно-ориентированное программирование», «Базы данных», «Теория вычислительных процессов и структур», «Компьютерное моделирование», «Распознавание образов и обработка изображений» и «Человеко-машинное взаимодействие». Особое внимание уделяется моделированию языкового поведения человека при работе с базами знаний интеллектуальных информационно-поисковых систем.

Включение данной дисциплины в учебный план заключительного учебного семестра перед преддипломной практикой и дипломным проектированием дает возможность студенту более четко сформулировать задачу на дипломное проектирование с точки зрения перспективных направлений интеллектуальных технологий компьютерной обработки информации.

Автор — Дмитрий Владимирович Михайлов, доцент кафедры Информационных технологий и систем Новгородского государственного университета им. Ярослава Мудрого.

Научный консультант — д.т.н., профессор Емельянов Геннадий Мартинович

Содержание

Содержание лекционных занятий

Дополнительные разделы по обработке и анализу текстов

Содержание лабораторных занятий

Дополнительные темы работ по моделям представления знаний

Демо

Инструментальные средства и библиотеки

Базы данных

Полезные ссылки

Для самоконтроля

Примерный список вопросов к экзамену.

Примечания

Личные инструменты