Системы искусственного интеллекта (курс лекций, Д.В.Михайлов)
Материал из MachineLearning.
(→Демо) |
(→Демо) |
||
Строка 59: | Строка 59: | ||
** [http://www.novsu.ru/file/1229881 анализом n-грамм на найденных синтаксических связях слов исходной фразы]. | ** [http://www.novsu.ru/file/1229881 анализом n-грамм на найденных синтаксических связях слов исходной фразы]. | ||
- | * [http://www.novsu.ru/file/1258899 Та же задача для случая более чем одной исходной фразы и оценки силы связи слов без синтаксических правил на основе классификации по TF-IDF] | + | * [http://www.novsu.ru/file/1258899 Та же задача для случая более чем одной исходной фразы и оценки силы связи слов без синтаксических правил на основе классификации по TF-IDF], в том числе: |
** [http://www.novsu.ru/file/1316653 вариант с факультативным учётом предлогов, союзов и междометий при выделении связей слов, а также оценкой (на основе найденных n-грамм) релевантности текстового корпуса ситуации языкового употребления, задаваемой исходными фразами]. | ** [http://www.novsu.ru/file/1316653 вариант с факультативным учётом предлогов, союзов и междометий при выделении связей слов, а также оценкой (на основе найденных n-грамм) релевантности текстового корпуса ситуации языкового употребления, задаваемой исходными фразами]. | ||
Версия 11:40, 28 августа 2017
Дисциплина «Системы искусственного интеллекта» для специальности 230105 важную роль в подготовке студентов к самостоятельной профессиональной деятельности в области интеллектуальных информационных технологий. Дисциплина «Системы искусственного интеллекта» для специальности 230105 относится к числу дисциплин специализации и читается в 9-м семестре. Она включает в себя рассмотрение основных вопросов современной теории и практики построения интеллектуальных систем (в первую очередь) символьной обработки и опирается на учебные курсы :«Дискретная математика», «Функциональное и логическое программирование», «Объектно-ориентированное программирование», «Базы данных», «Теория вычислительных процессов и структур», «Компьютерное моделирование», «Распознавание образов и обработка изображений» и «Человеко-машинное взаимодействие». Особое внимание уделяется моделированию языкового поведения человека при работе с базами знаний интеллектуальных информационно-поисковых систем.
Включение данной дисциплины в учебный план заключительного учебного семестра перед преддипломной практикой и дипломным проектированием дает возможность студенту более четко сформулировать задачу на дипломное проектирование с точки зрения перспективных направлений интеллектуальных технологий компьютерной обработки информации.
Автор — Дмитрий Владимирович Михайлов, доцент кафедры Информационных технологий и систем Новгородского государственного университета им. Ярослава Мудрого.
Научный консультант — д.т.н., профессор Емельянов Геннадий Мартинович
Содержание |
Содержание лекционных занятий
Дополнительные разделы по обработке и анализу текстов
Содержание лабораторных занятий
Дополнительные темы работ по моделям представления знаний
Демо
- Отбор фраз текстового корпуса, максимально релевантных исходной:
Инструментальные средства и библиотеки
- Apache OpenNLP — интегрированный пакет инструментов обработки текста. См. также описание пакета на NLPub.
Базы данных
Полезные ссылки
- Основы обработки текстов — спецкурс для студентов ВМК МГУ и ФКН ВШЭ. Лектор — канд. физ.-мат. наук Турдаков Денис Юрьевич.
- Китов В.В. Математические методы анализа текстов — обязательный спецкурс для магистров кафедры математических методов прогнозирования ВМК МГУ.