Марковский алгоритм кластеризации
Материал из MachineLearning.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Марковский алгоритм кластеризации
Марковский алгоритм кластеризации (MCL, Markov Clustering Algorithm) — алкоритм кластерного анализа основанный на потоке (случайном блуждании) в графе. Изначально разработан для выделения кластеров в графе, однако может быть применен к любым объектам для которых задана матрица сходства/различия.
Марковский алгоритм кластеризации — быстрый и масштабируемый алгоритм кластеризации, основанный на моделировании потока в графе.
Данный алгоритм был разработан в рамках PhD работы Van Dongen в 2000 году в центре математических и компьютерных наук в Нидерландах.
Термины и определения
Граф состоит из двух типов объектов 1) вершин(узлов)- V 2)ребер (пар вершин соединенных между собой) - E. Формально это можно записать как G:=(V,E) Кроме этого, каждый граф можно представить в виде матрицы смежности (M) размером V*V. Где Mij равен растоянию между узлом i и узлом j.
Случайный обход графа - такой обход вершин граф, при котором выбор следующей вершины зависит только от текущего положения на графе, а вероятность перейти к любой вершинне расчитывется исходя из матрицы смежности. Следует отметить что при таком обходе одна вершина может быть посещена неограниченное число раз. Случайное блуждание в графе - это цепь Маркова.
Строго определить что такое кластер в графе, не представляется возможном, однако можно дать два близких определения:
- Длинна пути между узлами одного кластера мало по сравнению с длинно пути между точками пренадлежажащими
одному кластеру.
- При случайном обходе графа, прежде чем покинуть кластер будут посещены многоие из его вершин
Общее описание метода
Метод опирается на следующе допущение - расстояния между узлами графа относящихся к одному кластеру, меньше чем растояние между узлами относящимся к различным кластерам. т.е. верояность перехода (поток) между узлами внутри одного кластера много больше чем между узлами относящимися к разным кластерам. таким образом если усиливать поток там где он силен и ослаблять его там где он слаб то согласно парадигме кластеризации графа границы между различными кластерами будут исчезать. Таким образом будет выявлена кластерная структура графа.
Моделирование потока в графе осуществляется путем преобразования его в марковский граф (см. рисуйнок 1).
На первом шаге граф преобразуется в матрицу растояний между узлами (смежную матрицу). В слуае если граф является не взвешенным можно считать что вес всех ребер равен единице. На втором шаге происходит преобразование смежной матрицы в матрицу вероятностей переходов между узлами (стохастическую матрицу). Для этого как правило нормируют значения в каждом отдельном столбце матрицы рассотяний, однако может быть применен любой другой алгоритм.
После того как стохастическую матрица получена, к ней поочердно применяют две функции (распространение и накачивание) до тех пор пока матрица изменяется (см. рисуйнок 2).
1) распространение - представляет собой обычное умножение матрицы самой на себя. Данная операция усиливает поток из вершины на потенциальных участников кластера.
2) накачивание - обычное умножение матрицы самой на себя. уменьшаем переходы между кластерами и увеличиваем внутри кластера.
расширение (expansion) - представляет собой произведение Адамара (бинарная операция над двумя матрицами одинаковой размерности, результатом которой является матрица той же размерности, в которой каждый элемент с индексами i, j — это произведение элементов с индексами i, j исходных матриц). Данная операция объединяет кластера, остабляет сильный ток и усиливает слабый.
Примеры способов кластеризации
Расмотрим работу данного метода на примере кластеризации простого графа и его смежной матрицы.
Возмем граф состоящий из 12 вершин и составим для него матрицу вероятностей переходов между узлами. Так как граф является не взвешенны вероятности перехода между соседними узлами и вероятность остаться в этом узле будет равна 1/(количество ребер смежных с вершиной + 1). Матрица представленна на рисунке 5. Таким образом мы получим матрицу. Процес MCL представлен на рисунке 5
итог по алгоритму
- Плюсы алгоритма
- Работает как с взвешенными, так и с невзвешенными графами
- Устойчив к шуму в данных
- Количество кластеров не указано заранее, но можно настроить степень детализации кластера
- Может находить кластера произвольной формы
- Минусы алгоритма
- Не нацелен находить перекрывающиеся кластеры (*)
- Не подходит для кластеров большого размера
- Часто кластеры получаются разного размера
- Время работы алгоритма в наихудшем случае Ο(V^3)
Дальнейшее развитие ,в 2012 году, метод получил как MLR-MCL R-MCL [Satuluri V. M. Scalable clustering of modern networks : дис. – The Ohio State University, 2012.]
В этих двух статьях двугой подход к кластеризации на графе:
L. Hagen and A. B. Kahng, A new approach to effective circuit clustering, in IEEE [91],
pp. 422–427.
C.-W. Yeh, C.-K. Cheng, and T.-T. Y. Lin, Circuit clustering using a stochastic flow injection
method, IEEE Transactions on Computer–Aided Design of Integrated Circuits and Systems,
14 (1995), pp. 154–162.
Графы часто возникают при упрощении сложных систем. К примеру в виде графа удобно отображать:
- взамосвязи различных сайтов в интернете
- Социальные сети (сети контактов)
- Генные сети в молекулярной биологии
- порты, аэропорты, города (в качестве узлов графа)и пути их соединяюющие (в качестве ребер).
3.2.1 Приложения
- умножение разреженных матриц (распределения строк по разным процессора), параллельные вычисления, численное решение уравнений в частных производных .
Разреженное матричное умножение требует м. Минимизация объема связи между процессорами - это разбиение графа проблема. [A. Gupta, Fast and effective algorithms for graph partitioning and sparsematrix ordering, IBM Journal of Research & Development, 41 (1997). http://www.research.ibm.com/journal/rd/411/gupta.html]. Решатели PDE действуют на сетке или сетке, и параллельное вычисление такого решателя требует разделение сетки, опять же, чтобы минимизировать связь между процессами сорс [53]. планирование и размещение микросхем [C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: a survey, Integration: the VLSI Journal, 19 (1995), pp. 1–81.] • Оценка требований к проводке и производительности системы в синтезаторе высокого уровня. Сис и поэтажное планирование.
- На сегодняшний день данный алгоритм применяется для данных в молекулярной биологии (выделение групп генов) [S. Brohee and J. van Helden. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics, 7, 2006.][J. Vlasblom and S.J. Wodak. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC bioinformatics, 10(1):99, 2009.]
- анилизе изображений.
Список используемой литературы
1) Van Dongen, S. 2000. “Graph clustering by flow simulation.” Ph.D. thesis, University of Utrecht, The Netherlands
2) https://www.micans.org/mcl/index.html
3) Li, Li, Christian J. Stoeckert, and David S. Roos. "OrthoMCL: identification of ortholog groups for eukaryotic genomes." Genome research 13.9 (2003): 2178-2189.
4)Satuluri, Venu, Srinivasan Parthasarathy, and Duygu Ucar. "Markov clustering of protein interaction networks with improved balance and scalability." Proceedings of the first ACM international conference on bioinformatics and computational biology. ACM, 2010.