Прикладная алгебра (курс лекций, С.И. Гуров)

Материал из MachineLearning.

Перейти к: навигация, поиск

Обзорный курс для студентов 3-го потока ВМК МГУ по основам алгебры (группы, кольца, поля) и её приложениям в кодировании и комбинаторике.

Лектор: Гуров Сергей Исаевич

Ассистент: Кропотов Д.А.

Свои вопросы по курсу и пожелания можно направлять письмом по адресу sgur@cs.msu.ru

В осеннем семестре 2018/2019 уч. г. занятия проходят на ВМК по понедельникам в ауд. П-8а, начало в 12-50.

Новости

08.11.18: в понедельник, 12 ноября, состоится написание контрольной работы. Студенты групп 320, 321 и 322 пишут контрольную в ауд. 579, остальные - в ауд. П-8а.

Контрольная работа

В программе курса предусмотрена письменная контрольная работа. Успешное написание контрольной работы является обязательным условием допуска к экзамену по курсу. При отсутствии допуска студент пишет контрольную работу на экзамене и, в случае успеха, сдает экзамен на первой пересдаче. При написании контрольной работы разрешается пользоваться любыми бумажными материалами, а также калькуляторами. Использование электронных устройств (кроме калькуляторов) запрещено.

Программа курса

Группы, кольца, поля

  1. Группы
  2. Кольца и поля

Конечные кольца и поля

  1. Поля Галуа
  2. Вычисления в конечных кольцах и полях
  3. Алгебра векторов над конечным полем
  4. Корни многочленов над конечным полем
  5. Циклические подпространства колец вычетов

Коды, исправляющие ошибки

  1. Блоковое кодирование: основные понятия
  2. Линейные коды
  3. Синдромное декодирование линейных кодов
  4. Циклические коды
  5. Коды БЧХ
  6. Декодирование кодов БЧХ

Алгебраические основы криптографии

  1. Основные понятия
  2. Система шифрования RSA
  3. Простота и факторизация натуральных чисел
  4. Задача дискретного логарифмирования

Литература

  1. Воронин В.П. Дополнительные главы дискретной математики, ф-т ВМК, 2002.
  2. Гуров С.И. Булевы алгебры, упорядоченные множества, решетки: определения, свойства, примеры. Либроком, 2013.
  3. Журавлев Ю.И., Флеров Ю.А., Вялый М.Н. Дискретный анализ. Основы высшей алгебры. М3-Пресс, 2007.
  4. Лидл Р., Нидеррайтер Г. Конечные поля: в 2-х т. Мир, 1988.
  5. Нефедов В.Н., Осипова В.А. Курс дискретной математики, МАИ, 1992.
  6. Ромащенко А.Е., Румянцев А.Ю., Шень А. Заметки по теории кодирования. МЦНМО, 2011.
  7. Lin S., Costello D. Error Control Coding Fundamentals and Applications. Prentice-Hall, 1983.
  8. Берлекэмп Э. Алгебраическая теория кодирования. - М.: Мир, 1971.
  9. Блейхут Р. Теория и практика кодов, контролирующих ошибки. - М.: Мир, 1986.
  10. Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. - М.: Связь. - 1979.
  11. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. – М.: Техносфера. - 2006.
  12. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. – М.: Мир. – 1976.

См. также

Страница кафедры математических методов прогнозирования ВМК МГУ

Курс «Прикладная алгебра» для студентов ММП

Личные инструменты