Статистическое оценивание
Материал из MachineLearning.
Содержание[убрать] |
Постановка задачи
Задача статистического оценивания неизвестных параметров - одна из двух основных (наряду с задачей проверки статистических гипотез) задач математической статистики.
Предположим, что имеется параметрическое семейство распределений вероятностей (для простоты будем рассматривать распределение случайных величин и случай одного параметра). Здесь - числовой параметр, значение которого неизвестно. Требуется оценить его по имеющейся выборке значений, порожденной данным распределением.
Различают два основных типа оценок: точечные оценки и доверительные интервалы.
Точечное оценивание
Точечное оценивание - это вид статистического оценивания, при котором значение неизвестного параметра приближается отдельным числом. То есть необходимо указать функцию от выборки (статистику)
значение которой будет рассматриваться в качестве приближения к неизвестному истинному значению .
Ниже приводятся некоторые свойства, которыми могут обладать или не обладать точечные оценки.
Состоятельность
...to be continued...
К точечному оцениванию относятся метод моментов, метод минимального расстояния , метод максимального правдоподобия, метод наименьших квадратов.
Свойства точечных оценок
(оценка сходится по вероятности к параметру )
- где
(эффективная оценка обладает минимальной дисперсией среди всех несмещенных оценок)
- Статистика называется достаточной, если
Критерий факторизации
Теорема
Статистика является достаточной тогда и только тогда, когда
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
Ссылки
- Статистическое оценивание(Яндекс.Словари)
- Точечная оценка (Википедия)
- Point estimation (Wikipedia)
- Estimator (Wikipedia)