Статистическое оценивание

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

[убрать]

Постановка задачи

Задача статистического оценивания неизвестных параметров - одна из двух основных (наряду с задачей проверки статистических гипотез) задач математической статистики.

Предположим, что имеется параметрическое семейство распределений вероятностей F(t,\theta) (для простоты будем рассматривать распределение случайных величин и случай одного параметра). Здесь \theta\in\mathbb{R} - числовой параметр, значение которого неизвестно. Требуется оценить его по имеющейся выборке X^n=(X_1,\ldots,X_n) значений, порожденной данным распределением.

Различают два основных типа оценок: точечные оценки и доверительные интервалы.

Точечное оценивание

Точечное оценивание - это вид статистического оценивания, при котором значение неизвестного параметра \theta приближается отдельным числом. То есть необходимо указать функцию от выборки (статистику)

\widehat\theta_n=\widehat\theta_n(X^n),

значение которой будет рассматриваться в качестве приближения к неизвестному истинному значению \theta.

Ниже приводятся некоторые свойства, которыми могут обладать или не обладать точечные оценки.

Состоятельность

...to be continued...



К точечному оцениванию относятся метод моментов, метод минимального расстояния \chi^2, метод максимального правдоподобия, метод наименьших квадратов.

Свойства точечных оценок

(оценка сходится по вероятности к параметру \theta)

\mathsf{D}\hat{\theta}_n=\min\mathsf{D}\hat{\theta}_n', где \hat{\theta}'_n:\; \mathsf{E}\hat{\theta}'_n=\theta


(эффективная оценка обладает минимальной дисперсией среди всех несмещенных оценок)

F(X^n|T=t,\theta)=F(X^n|T=t)

Критерий факторизации

Теорема
Статистика T(X^n) является достаточной тогда и только тогда, когда

F(X^n,\theta)=g(T,\theta)h(X^n)

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.

Ссылки

Личные инструменты