Обсуждение:Многомерная интерполяция и аппроксимация на основе теории случайных функций
Материал из MachineLearning.
Аннотация
Здравствуйте, Юрий! Статья переименована. Разбить статью на части без создания отдельных статей можно только путем реструктуризации, путем внесения изменений в содержание статьи. Если Вы напишите краткую аннотацию (как принято при публикации журнальных статей) и приведете список литературы, Ваша статья от этого выиграет.
Всего хорошего, В.В. Стрижов. 17:29, 12 августа.
Название статьи
Юрий, добрый день! Интересная у Вас тема работы. Очень хочется посмотреть на список литературы, чтобы понять какие идеи откуда пришли.
У меня следующее преложение. Сейчас название статьи довольно длинное. Его начало "Обучение с учителем" общо и может относиться к чему угодно, его конец "Вариант точного решения" специален. Предлагаю назвать статью "Многомерная интерполяция и аппроксимация на основе теории случайных функций".
Жду завершения Вашей работы. Всего хорошего, В.В. Стрижов. 14:07, 2 августа.
Здравствуйте, Вадим Викторович!
Статья в текущий момент выложена полность. Согласен, что название статьи получилось слишком длинное. Но я новичок в разметке, и не знаю как теперь его изменить. Если Вы его измените, буду благодарен. Я не совсем представлял как дать название, хотелось подчеркнуть и то что решена задача многомерной интерполяции и аппроксимации, но также и то что получился достаточно простой неитеративный метод машинного обучения.. Но думаю, что Ваш вариант названия подойдет.(к тому же в текущее название вкралась опечатка). Кроме того статья получилась достаточно большая по объему, можно ли как-то разбить ее на несколько страниц без того чтобы создавать новые статьи с названиями?
На счет темы работы, она связана была с моей диссертацией, все ключевые моменты там были изложены, я являюсь их автором. Но собрать воедино в виде некой законченной теории - решил только сейчас и выложил тут их первый раз. Литературой пользовался разной, но в основном справочного характера, могу дать ссылки, если нужно, или привести их из списка литературы в своей диссертации.
Сейчас правда (и в ближайший месяц) и нахожусь далеко за городом, имею очень ограниченные возможности для работы и доступа в интернет, поэтому если будут замечания по статье, прошу прощения что могу не сразу внести изменения или ответить с комментарием, но постараюсь.
С Уважением, Бахвалов Юрий.
***
На мой взгляд, многие утверждения звучат слишком сильно.
Примеры классификации качественно похожи на решения, получаемые методом опорных векторов. Напрашивается сравнение с SVM. Nvm 20:58, 29 июля 2009 (MSD)
- Здравствуйте Виктор Михайлович.
Спасибо за первый отзыв. Еще не успел выложить теоретическую часть, надеюсь, она прояснит ситуацию. Готов обсудить все свои утверждения, если Вы меня убедите, обязательно их исправлю.
С Уважением, Участник:Бахвалов Юрий. 9:25, 30 июля.
Первое утверждение статьи:
<<Цель данной статьи показать, что машинное обучение в его парадигме “обучения с учителем”, задачи многомерной интерполяции и аппроксимации, могут быть обобщены на основе теории случайных функций.>>
При этом нигде не сформулировано, что автор понимает под задачей машинного обучения, и нет формальной постановки этой задачи. А если задача не сформулирована, то как можно говорить о её обобщении.
Далее говорится, что <<естественным критерием для поиска требуемой функции будет вероятность ее как реализации>>. В непрерывном случае здесь, видимо, имеется в виду плотность вероятности.
Однако в задачах машинного обучения естественным критерием качества решения являются ожидаемые потери.
Nvm 19:11, 12 августа 2009 (MSD)