Методы оптимизации в машинном обучении (курс лекций)/2014

Материал из MachineLearning.

Версия от 08:40, 7 сентября 2015; Kropotov (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск


Курс посвящен классическим и современным методам решения задач непрерывной оптимизации, а также особенностям их применения в задачах оптимизации, возникающих в машинном обучении. Основной акцент в изложении делается на практические аспекты реализации и использования методов. Целью курса является выработка у слушателей навыков не только по подбору подходящего метода для своей задачи, но и по разработке своего метода оптимизации, наиболее полно учитывающего особенности конкретной задачи.

Курс рассчитан на студентов старших курсов и аспирантов. Знание основ машинного обучения приветствуется, но не является обязательным — все необходимые понятия вводятся в ходе лекций.

Автор курса: Д.А. Кропотов. Вопросы и комментарии по курсу просьба адресовать письмом на bayesml@gmail.com. В название письма просьба добавлять [МОМО14].

Расписание на 2014 учебный год

В осеннем семестре 2014 года спецкурс читается на ВМК по понедельникам в ауд. 508, начало в 18-10.

Дата Название лекции Материалы
15 сентября 2014 Введение в курс
22 сентября 2014 Методы одномерной минимизации Конспект
29 сентября 2014 Базовые методы многомерной минимизации
6 октября 2014 Метод сопряжённых градиентов
13 октября 2014 Неточный (безгессианный) метод Ньютона и квазиньютоновские методы оптимизации
20 октября 2014 Методы оптимизации с использованием глобальных верхних оценок
27 октября 2014 Задачи оптимизации с ограничениями, метод Ньютона для задач с ограничениями вида равенства
3 ноября 2014 Лекции не будет. Праздничный день.
10 ноября 2014 Лекции не будет.
17 ноября 2014 Прямо-двойственный метод Ньютона и метод логарифмических барьеров
24 ноября 2014 Прямо-двойственный метод внутренней точки
1 декабря 2014 Разреженные методы машинного обучения
8 декабря 2014 Стохастическая оптимизация
15 декабря 2014 Методы оптимизации для глубинного обучения
22 декабря 2014 Экзамен

Экзамен

Экзамен по курсу для студентов 4-го курса состоится 20 января в ауд. 579, начало в 14-00, для всех остальных - 24 января в ауд. 504, начало в 14-00. На экзамене при подготовке билета разрешается пользоваться любыми материалами.

Список вопросов + теоретический минимум

Система выставления оценок за курс

В рамках курса предполагается два практических задания и экзамен. Каждое задание и экзамен оцениваются по пятибалльной шкале. Итоговая оценка за курс получается путем взвешенного суммирования оценок за задания и экзамен с дальнейшим округлением в сторону ближайшего целого. Вес каждого задания составляет 1/3. За каждый день просрочки при сдаче задания начисляется штраф в 0.1 балла, но не более 2 баллов. Для допуска к экзамену необходимо предварительно сдать на положительную оценку оба задания.

Практические задания

Задание 1. Одномерная оптимизация

Задание 2. Методы оптимизации для L_1-регуляризованной линейной регрессии

Программа курса

Основные понятия и примеры задач

  • Градиент и гессиан функции многих переменных, их свойства, необходимые и достаточные условия безусловного экстремума;
  • Матричные разложения, их использование для решения СЛАУ;
  • Структура итерационного процесса в оптимизации, понятие оракула, критерии останова;
  • Глобальная и локальная оптимизация, скорости сходимости итерационных процессов оптимизации;
  • Примеры оракулов и задач машинного обучения со «сложной» оптимизацией.

Методы одномерной оптимизации

  • Минимизация функции без производной: метод золотого сечения, метод парабол;
  • Гибридный метод минимизации Брента;
  • Методы решения уравнения f^\prime(x)=0: метод деления отрезка пополам, метод секущей;
  • Минимизация функции с известной производной: кубическая аппроксимация и модифицированный метод Брента;
  • Поиск ограничивающего сегмента;
  • Условия Армихо-Голдштайна-Вольфа для неточного решения задачи одномерной оптимизации;
  • Неточные методы одномерной оптимизации, backtracking.

Методы многомерной оптимизации

  • Методы линейного поиска и доверительной области;
  • Метод градиентного спуска: наискорейший спуск, спуск с неточной одномерной оптимизацией, скорость сходимости метода для сильно-выпуклых функций с липшицевым градиентом, зависимость от шкалы измерений признаков;
  • Сходимость общего метода линейного поиска с неточной одномерной минимизацией;
  • Метод Ньютона: схема метода, скорость сходимости для выпуклых функций с липшицевым гессианом, подбор длины шага, способы коррекции гессиана до положительно-определённой матрицы;
  • Метод сопряженных градиентов для решения систем линейных уравнений, скорость сходимости метода, предобуславливание;
  • Метод сопряженных градиентов для оптимизации неквадратичных функций, стратегии рестарта, зависимость от точной одномерной оптимизации;
  • Неточный (безгессианный) метод Ньютона: схема метода, способы оценки произведения гессиана на вектор через вычисление градиента;
  • Применение неточного метода Ньютона для обучения линейного классификатора и нелинейной регрессии, аппроксимация Гаусса-Ньютона и адаптивная стратегия Levenberg-Marquardt;
  • Квазиньютоновские методы оптимизации: DFP, BFGS и L-BFGS;

Методы оптимизации с использованием глобальных верхних оценок, зависящих от параметра

  • Вероятностная модель линейной регрессии с различными регуляризациями: квадратичной, L1, Стьюдента;
  • Идея метода оптимизации, основанного на использовании глобальных оценок, сходимость;
  • Пример применения метода для обучения LASSO;
  • Построение глобальных оценок с помощью неравенства Йенсена, ЕМ-алгоритм, его применение для вероятностных моделей линейной регрессии;
  • Построение оценок с помощью касательных и замены переменной;
  • Оценка Jaakkola-Jordan для логистической функции, оценки для распределений Лапласа и Стьюдента;
  • Применение оценок для обучения вероятностных моделей линейной регрессии;
  • Выпукло-вогнутая процедура, примеры использования.

Методы внутренней точки

  • Необходимые и достаточные условия оптимальности в задачах условной оптимизации, условия Куна-Таккера и условия Джона, соотношение между ними;
  • Выпуклые задачи условной оптимизации, двойственная функция Лагранжа, двойственная задача оптимизации;
  • Решение задач условной оптимизации с линейными ограничениями вида равенство, метод Ньютона;
  • Прямо-двойственный метод Ньютона, неточный вариант метода;
  • Метод логарифмических барьерных функций, поиск допустимой стартовой точки;
  • Методы первой фазы;
  • Прямо-двойственный метод внутренней точки;
  • Использование методов внутренней точки для обучения SVM.

Разреженные методы машинного обучения

  • Модели линейной/логистической регрессии с регуляризациями L1 и L1/L2;
  • Понятие субградиента выпуклой функции, его связь с производной по направлению, необходимое и достаточное условие экстремума для выпуклых негладких задач безусловной оптимизации;
  • Метод наискорейшего субградиентного спуска;
  • Проксимальный метод;
  • Метод покоординатного спуска и блочной покоординатной оптимизации.

Методы отсекающих плоскостей

  • Понятие отделяющего оракула, базовый метод отсекающих плоскостей (cutting plane);
  • Надграфная форма метода отсекающих плоскостей;
  • Bundle-версия метода отсекающих плоскостей, зависимость от настраиваемых параметров;
  • Применение bundle-метода для задачи обучения SVM;
  • Добавление эффективной процедуры одномерного поиска;
  • Реализация метода с использованием параллельных вычислений и в условиях ограничений по памяти.

Стохастическая оптимизация

  • Общая постановка задачи стохастической оптимизации, пример использования;
  • Задачи минимизации среднего и эмпирического риска;
  • Метод стохастического градиентного спуска, две фазы итерационного процесса, использование усреднения и инерции;
  • Стохастический градиентный спуск как метод оптимизации и как метод обучения;
  • Метод SAG;
  • Применение стохастического градиентного спуска для SVM (алгоритм PEGASOS);

Методы оптимизации для глубинного обучения

  • Модель глубинного автокодировщика;
  • Стандартный подход к глубинному обучению: стохастический градиент + мини-батчи + предобучение + drop-out;
  • Алгоритм обратного распространения ошибки и его обобщения для быстрого умножения гессиана на произвольный вектор;
  • Неточный метод Ньютона с предобуславливанием через L-BFGS.

Литература

  1. Optimization for Machine Learning. Edited by Suvrit Sra, Sebastian Nowozin and Stephen J. Wright, MIT Press, 2011.
  2. J. Nocedal, S.J. Wright. Numerical Optimization. Springer, 2006.
  3. S. Boyd, L. Vandenberghe. Convex Optimization, Cambridge University Press, 2004.
  4. A. Antoniou, W.-S. Lu. Practical Optimization: Algorithms and Engineering Applications, Springer, 2007.
  5. Б. Поляк. Введение в оптимизацию, Наука, 1983.
  6. Ю. Нестеров. Методы выпуклой оптимизации, МЦМНО, 2010.
  7. R. Fletcher. Practical Methods of Optimization, Wiley, 2000.
  8. Numerical Recipes. The Art of Scientific Computing, Cambridge University Press, 2007.

Архив

2012 год

См. также

Курс «Графические модели»

Курс «Байесовские методы в машинном обучении»

Спецсеминар «Байесовские методы машинного обучения»

Математические методы прогнозирования (кафедра ВМиК МГУ)