Спецкурс «Прикладные задачи анализа данных»

Материал из MachineLearning.

Перейти к: навигация, поиск
Регистрация на спецкурс завершена. Кто не успел - ждите следующего года.


Зарегистрированные слушатели получили 3 инфо-рассылки (в них вся информация по времени и дате спецкурса).


Содержание

Аннотация

Данный курс стал победителем конкурса инновационных учебных технологий.


Лектор: Дьяконов Александр

Основная цель: практика решения современных задач классификации, прогнозирования, регрессии, рекомендации и т.п., подготовка участников к соревнованиям на платформах Kaggle и Algomost.

Мероприятие проходит в двух режимах:

  • спецкурса – лекции о решении прикладных задач, обучение некоторым системам анализа данных (например R, Matlab, Python+ и т.п.
  • спецсеминара – обсуждение решаемых задач, выработка общих стратегий, разделение работы в рамках участия в соревновании одной командой, мозговой штурм и т.п.

Важно: от участников потребуется выполнение нетривиальных практических заданий!

Правила

  • Рассылки материалов делаются только зарегистрированным слушателям курса (перечислены в таблице слушателей).
  • Слушатели, которые перестают делать домашние задания, удаляются из таблицы.
  • За каждое задание можно было получить от 0 до 10 штрафных баллов. 10 штрафных баллов понижают итоговую оценку на один балл.
ЗАПИСАЛИСЬ группа 08.10 - соцсети
email/LB
15.10 - соцсети
преодоление порога
05.11 - что за данные 06.11 - отчёты по соцсетям
Семёнов Станислав Георгиевич ВШЭ - / 0 [-7] + +
Арбузова Дарья Андреевна 517 + / + + + +
Гущин Александр Евгеньевич МФТИ + / + + +
Потапенко Анна Александровна 617 + / + + +
Фенстер Александра Михайловна НИУ ВШЭ 172мАИД + / + + + +
Вихрева Мария Викторовна 315 + / + + + +
Бахтин Антон Вячеславович МГУ, Яндекс + / - [-5] [-5] +
Ульянов Дмитрий Владимирович 517 + / 0 [-2] + + +
Шапулин Андрей Валентинович 417 + / + + + +
Сиверский Михаил Николаевич физфак [-10] [-5] +
Игнатов Алексей Николаевич 516 [-10] + + +
Сокурский Юрий Валентинович 517 + / + +
Дойков Никита Владимирович 417 + / + + + +
Лукашкина Юлия Николаевна 417 [-10] + 0
Байбурин Валерий Тагирович м118 + / - [-5] [-5]
Дымов Григорий Андреевич Stockholm university + / + [-5] + +
Чинаев Николай Николаевич МФТИ [-10] [-5]
Хальман Михаил Анатольевич 417 + / + + +
Нижибицкий Евгений аспВМК - / 0 [-7] + + +
Остапец Андрей аспВМК - / + [-5] + + +

Лекции

Здесь будет выложена программа нового (2014 года) - по мере чтения курса.

Число Лекция Материалы, замечания
24.09.14 Matrix Laboratory (эффективное программирование): системы и языки для анализа малых данных, интерпретатор Matlab (достоинства и недостатки), типы данных (массивы ячеек, структуры, строки, логические массивы, NaN), матрицы (порождение, конкатенация, индексация, разреженные матрицы), операции над ними, фокусы с размерностями, файловый ввод и вывод, m-файлы (функции и скрипты), графика (начало), анонимные функции, поэлементные функции, основы эффективного программирования, возможности работы с большими данными слайды лекции 1, рекомендованное учебное пособие: Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab
01.10.14 Вводное занятие: цели курса, материалы, правила, участие в соревнованиях.

Домашнее задание №1: Соревнование Learning Social Circles in Networks по определению кругов в эго-подграфах графа социальной сети (задача, данные, их загрузка, редакторское расстояние), приложения анализа социальных сетей.

Социальные сети: динамические графы, приложения анализа социальных сетей, погружение графов в признаковое пространство, сходство вершин, важность вершин.

слайды лекции 2 (zip, jpg 8Mb), книга [1], код для загрузки данных
08.10.14 Социальные сети (продолжение): прогнозирование появления рёбер в динамическом графе, решение задачи соревнования IJCNN Social Network Challenge, признаки рёбер, алгоритм PageRank и его модификации, сообщества в графах и их выделение, спектральные методы на графах, генерация случайных графов.

Домашнее задание №1: мозговой штурм.

слайды лекции 2 (zip, jpg 8Mb), статья Learning to Discover Social Circles in Ego Networks, обзор Community Detection in Graphs, обзор Случайные графы, модели и генераторы.
15.10.14 Искусство визуализации данных: игра "Что за данные", признаки в задаче [bioresponse], выделение групп признаков, что можно увидеть в данных, оценка признаков и фолдов, деформация ответов, устойчивость закономерностей, профили лет (в прогнозировании вр.рядов), плотности, оценка качества признаков с помощью RF и удалений, результаты алгоритмов и их линейные комбинации, ручная деформация пространств, визуализация и сглаживание плотностей, построение профилей. Что надо знать о признаках. Визуализация по-вертикали и по-горизонтали. Шумы и шумовые признаки. Задачи [cause-effect-pairs], [GiveMeSomeCredit], [DarkWorlds]. слайды лекции 3 (zip, jpg 7.6Mb), книга [2]
22.10.14 Оценка среднего, оценка вероятности, оценка плотности. Весовые схемы.: проблема оценки среднего, выбросы, разные целевые функционалы, оценка минимального контраста, среднее по Колмогорову, SMAPE-минимизация, двухэтапные алгоритмы и их настройка, пересчёт вероятности и прямая оценка, введение весовых схем, устойчивость весовых схем, ансамблирование, непараметрическое восстановление плотности, весовые схемы при оценке плотности. Задача [dunnhumby's Shopper Challenge]. Задача [пробки]. слайды лекции 4 (zip, jpg 9.3Mb), книга [3], статья [4]
29.10.14 Оценка среднего, оценка вероятности, оценка плотности. Весовые схемы. (продолжение)
05.11.14 Линейные алгоритмы.

Разбор решения задачи соревнования IJCNN Social Network Challenge.


Старую программу см. на странице Спецкурс «Прикладные задачи анализа данных» (2013 год).

Отчётность

  • отчёты по решению конкурсных задач (доклады с презентацией + исходники)
  • зачёт с оценкой в конце семестра

Страницы курсов прошлых лет

Спецкурс «Прикладные задачи анализа данных» (2013 год)

Ссылки

  1. Книга Jure Leskovec, Anand Rajaraman, Jeff Ullman Mining of Massive Datasets * Неплохая книга на английском языке с обзором основных задач и методов в анализе данных (уровень сложности - средний).
  2. Книга Beautiful Visualization: Looking at Data through the Eyes of Experts (Theory in Practice) по визуализации данных
  3. Книга Шурыгин А.М. Математические методы прогнозирования * Неплохие идеи для решения некоторых практических задач статистики (но в целом, специфична)
  4. Статья Прогноз поведения клиентов супермаркетов с помощью весовых схем оценок вероятностей и плотностей.
  5. Книга Научно-популярная лекция «Введение в анализ данных» (PDF, 1.4 Мб) * Вводная лекция, которая написана для просеминара.
  6. Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab (практикум на ЭВМ кафедры математических методов прогнозирования) * Глава 12 «Шаманство в анализе данных».
  7. Научно-популярная лекция «Шаманство в анализе данных» (1.21Мб) * Переработка предыдущего источника в научно-популярную лекцию.
  8. Научно-популярная лекция «Чему не учат в анализе данных и машинном обучении» * Рассказываются тонкости решения задач, которые умалчиваются в основных курсах.
  9. Прогнозирование рядов соревнования «Tourism Forecasting Part Two» (414Кб) * Подробное описание некоторых простых алгоритмов для прогнозирования туристических временных рядов.
  10. Data Science * Аналогичный (по духу) гарвардский курс
  11. Страница спецсеминара «Алгебра над алгоритмами и эвристический поиск закономерностей» * Приведены ссылки на сайты с данными реальных задач анализа данных.

Ещё ссылки

Неплохая короткая демка про соревнования в анализе данных, платформы для соревнований и возможности системы R.

ДОВОДИМАЯ РАНЕЕ ИНФОРМАЦИЯ (уже не актуальна)

В сентябре 2014 года будет объявлен новый набор слушателей спецкурса.

Поскольку обычно желающих очень много, а работа на спецкурсе подразумевает сильную вовлечённость студентов и небольшое число слушателей, то будет произведён отбор.

Для участия в отборе необходимо:

  • освоить (если его не было в учебной программе) курс Машинное обучение,
  • выступить хотя бы в одном соревновании по анализу данных (см. ниже),
  • Пройти анкетирование (или собеседование в сентябре).

Список допустимых соревнований:

Результат будет учитываться при отборе. Участие в соревновании не гарантирует отбор!

В новой версии спецкурса будет серия лекций по системам Matlab и R.

Кроме того, будут рассмотрены новые темы: например, анализ соцсетей.


Объявлен набор слушателей на спецкурс (5 сентября 2014 года). Необходима регистрация! Для этого надо прислать на почту djakonov (собака) mail (точка) ru

Тема письма: [ПЗАД] Фамилия студента

Текст: в первой строке через точку с запятой указываются

  • Фамилия Имя Отчество,
  • группа (вуз, если из другого вуза),
  • в скольких соревнования на сайте Kaggle участвовали (число),
  • какие курсы по машинному обучению прослушаны,
  • желаемые дни и часы (в формате ПТН, 18-00),
  • знакомые языки и системы программирования, включая программы и библиотеки для машинного обучения,
  • страница на Kaggle,
  • сколько часов в неделю готовы уделять выполнению практических заданий.

В других строчках (начиная со второй) можно по желанию дать пояснения.

Пример: Дьяконов Александр Геннадьевич; 617; 25; ММРО Воронцов; ВТ 18-00, СР 16-20; R, Matlab, Python, Weka, RapidMiner, Liblinear, VW; https://www.kaggle.com/users/3090/alexander-d-yakonov; 8

Посещение спецкурса закрытое, число мест ограничено, регистрация скоро будет закрыта – спешите…