Критерий Льюнга-Бокса

Материал из MachineLearning.

Перейти к: навигация, поиск

Критерий Льюнга-Бокса это статистический критерий для нахождения автокорреляции временных рядов. Вместо тестирования на случайность каждого отдельного коэффициента, он проверяет на отличие от нуля сразу несколько коэффициентов автокорреляции.


Определение

Тест Льюнга-Бокса может быть определен следующим образом. Выдвигаются две конкурирующие гипотезы:

H_0 : данные являются случайными (то есть представляют собой белый шум).
H_a  : данные не являются случайными.

Вычисляем статистику:

 Q = n(n + 2) \sum_{k = 1}^{m} \frac{\widehat{\rho}^2_ k } {n - k}  .

Где n - число наблюдений, \widehat{\rho}_ k - автокорреляция  k -го порядка,  m - количество проверяемых лагов. Пусть  \alpha - уровень значимости, тогда если

 Q > \chi_{1-\alpha,m}^2

где  \chi_{1-\alpha,m}^2 это \alpha-квантиль для хи-квадрат распределения с  m степенями свободы, то нулевая гипотеза отвергается и признается наличие автокорреляции до m -го порядка во временном ряду.

Критерий Льюнга-Бокса основан на статистике Бокса-Пирса, он имеет такое же асимптотическое распределение, но его распределение ближе к \chi^2 для конечных выборок. Кроме того, критерий не теряет своей состоятельности даже если процесс не имеет нормального распределения (при наличии конечной дисперсии). Используется при построении моделей ARIMA. При этом следует иметь в виду, что данное тестирование применяется к остаткам полученной модели ARIMA, а не к исходным данным.

Пример

Посмотрим, как работает критерий Льюнга-Бокса в среде MatLab.

a = 1:100;
b = normrnd(50, 20, 100, 1);
[~,pValuea] = lbqtest(a);
[~,pValueb] = lbqtest(b);

Полученные значения p-value 0 и 0.94 соответственно.

Ссылки

  • Box, G. E. P. and Pierce, D. A. (1970). Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association, 65: 1509–1526. [1]
  • Суслов В. И., Ибрагимов Н. М., Талышева Л. П., Цыплаков А. А. (2005) Эконометрия. — Новосибирск: СО РАН. — 744 с.
  • Реализация в Matlab.
  • Реализация в R.
Личные инструменты