Машина опорных векторов
Материал из MachineLearning.
Машина опорных векторов - является одной из наиболее популярных методологий обучения по прецедентам, предложенной В.Н. Вапником и известной в англоязычной литературе под названием SVM (Support Vector Machine).
Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin). Случай линейной разделимости. Задача квадратичного программирования. Опорные векторы. Случай отсутствия линейной разделимости. Функции ядра (kernel functions), спрямляющее пространство, теорема Мерсера. Способы построения ядер. Примеры ядер. Сопоставление SVM и нейронной RBF-сети. Обучение SVM методом активных ограничений. SVM-регрессия.
Страница на этапе заполнения.
Содержание |
Машина опорных векторов в задачах классификации
Понятие оптимальной разделяющей гиперплоскости
Линейно разделимая выборка
Линейно неразделимая выборка
Ядра и спрямляющие пространства
Алгоритмы настройки
Машина опорных векторов в задачах регрессии
Программные реализации
Литература
- Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.