Метод Белсли
Материал из MachineLearning.
Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Содержание[убрать] |
Анализ коллинеарности
Линейная регрессионная модель:
(1)
где - n-мерный ветор ответа(зависимой переменной),
- n x p (n>p) матрица признаков
- p-мерный вектор неизвестных коэффициентов,
- p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей
, где
это n x n единичная матрица, а
. Будем считать что
имеет ранг p.
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения
определяется как:
(2)
Где - n x p ортогональная матрица,
- p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями
,
- p x p ортогональная матрица, чьи колонки это собственные вектора
. Если существует коллинеарная зависимоть, то
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.
Предположим, что
, или просто
, элементы матрицы
упорядочены так, что
И рассмотрим разбиение
где
и
диогональные, и недиогональнык блоки нулевые.
, или просто
, содержит достаточно большие сингулярные значения, а
, или
, содержит близкие к нулю.
Теперь разделим
и
соответственно:
где и
соответствуют первым s наибольших сингулярных значений, а
и
содержат
веторов соответствующих малым сингулярным значениям.
Матрица
ортогональна, т.е
, так же как и
и
. Таким образом :
Т.к тоже ортогональна, то
Таким образом разложение нам дает:
Обозначим слагаемые в правой части как
(8)
Заметим что получившиеся матрицы ортогональны, т.е :
(9)
что обеспечивает возможность ортогонального разложения :
(10)
Здесь все матрицы имеют размер и полагая что
имеет ранг p,
и
имеють ранг s и (p-s) соответственно. Тогда для разложения (2) :
(11)
Далее мы получаем
(12)
и
(13)
Равенства в (12) и (13) получаются из (8) и (10) ссылаясь на то что из ортогональности следует
. Это значит что
содержит всю информацию, и только ее, входящую в
которая свободна от коллинеарности связанной с остальными (p-s) собственными векторами.
Соответственно содержит только информацию связанную с коллинеарностью делая прогноз на дополнительное пространство
. Это пространство связанное с элементами матрицы
близкими к 0 называется квази-нулевым пространством
Следовательно предложенное разложение подчеркивает как часть
полученную из s основных компонентов которые в меньшей степени участвуют в коллинеарности.
же содержит информацию связанную с p-s компонентами которые участвую в коллинеарных зависимостях. Переменные, входящие в коллинеарности, это те, которые имеют наибольшие координаты в столбцах матрицы
.