Анализ мультиколлинеарности (пример)
Материал из MachineLearning.
Мультиколлинеарность — тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров.
Содержание[убрать] |
Постановка задачи
Задана выборка откликов и признаков. Рассматривается множество линейных регрессионных моделей вида:
Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию
.
Требуется создать инструмент исследования мультиколлинеарности признаков (методики VIF, Belsley) и исследовать устойчивость модели на зависимость параметров модели от дисперсии случайной переменной и выбросов в выборке.
Описание алгоритма
Фактор инфляции дисперсии (VIF)
Дисперсия :
Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:
где — коэффициент детерминации j-го признака относительно остальных:
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение велико, то
— мало, то есть
близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
Методика Belsley, Kuh, и Welsch (BKW)
Диагностика Коллинеарности BKW основана на двух элементах, относящихся к матрице данных
использующейся в линейной регрессии
: the scaled condition indexes и the variance-decomposition proportions. Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы
:
, где
и
- диогональная с неотрицательными элементами
называющимися сингулярными значениями
:
,
,
Condition index | ||||
---|---|---|---|---|
| | | ... | |
| | ... | ... | |
. | . | . | . | |
. | . | . | . | |
. | . | . | . | |
| | | ... | |
,
,
,
,
далее
,
,
Вычислительный эксперимент
Исходный код
Смотри также
Литература
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |