Прикладная алгебра (курс лекций, С.И. Гуров)
Материал из MachineLearning.
Обзорный курс для студентов 3-го потока ВМК МГУ по основам алгебры (группы, кольца, поля) и её приложениям в кодировании и шифровании.
Лектор: Гуров Сергей Исаевич
Ассистенты: Кропотов Дмитрий, Варламова Арина, Добролюбова Ольга
Свои вопросы по курсу можно задавать в телеграм-чате.
В осеннем семестре 2020/2021 уч. г. занятия проходят в дистанционном режиме по понедельникам, начало в 12-50. Ссылка на зум-конференцию.
Видеозаписи отдельных занятий: ссылка
Экзамен
Все студенты, сдающие экзамен, заранее распределяются по конкретному дню/времени сдачи. Для участия в экзамене необходимо добавиться в курс на классруме. За час до запланированного времени сдачи студент через классрум получает номер экзаменационного вопроса, а также зум-ссылку. В течение этого часа студент самостоятельно пишет ответ на экзаменационный вопрос. При этом разрешается пользоваться любыми материалами. Далее в указанное время студент подключается по зум-ссылке и сдаёт устный экзамен экзаменатору. При ответе экзаменатору со стороны студента должна быть обеспечена возможность интерактивного написания формул. Здесь можно использовать графический планшет или установить мобильный телефон в качестве выносной веб-камеры, закрепить его над столом и далее писать ручкой на бумаге. Опрос по курсу начинается с вопросов теоретического минимума. На эти вопросы студент должен готов отвечать без подготовки. Неудовлетворительный ответ на вопросы теор.минимума влечёт неудовлетворительную оценку за экзамен.
Материалы
Программа курса
Группы, кольца, поля
- Группы
- Кольца и поля
- Векторные пространства, гомоморфизмы, сравнения
Конечные кольца и поля
- Поля Галуа
- Вычисления в конечных кольцах и полях
- Алгебра векторов над конечным полем
- Корни многочленов над конечным полем
- Циклические подпространства колец вычетов
Коды, исправляющие ошибки
- Блоковое кодирование: основные понятия
- Линейные коды
- Синдромное декодирование линейных кодов
- Циклические коды
- Коды БЧХ
- Декодирование кодов БЧХ
Алгебраические основы криптографии
- Основные понятия
- Система шифрования RSA
- Факторизация натуральных чисел
- Дискретное логарифмирование
- Криптосистемы МакЭлиса и Нидеррайтера
Начала эллиптической криптографии
- Эллиптические кривые: введение
- Основные понятия
- Эллиптические кривые в конечных полях
- Криптосистемы на эллиптических кривых
Литература
- Журавлёв Ю. И., Флёров Ю. А., Вялый М. Н. Дискретный анализ. Основы высшей алгебры. М.: МЗ Пресс, 2007.
- Лидл Р., Нидеррайтер Г. Конечные поля: В 2-х т. М.: Мир, 1988.
- Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. М.: Техносфера, 2006.
- Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. М.: Мир, 1976.
- Токарева Н. Н. Симметричная криптография. Краткий курс: учебное пособие / Новосиб. гос. ун-т. Новосибирск, 2012.
- Применко Э. А. Алгебраические основы криптографии: Учебное пособие. - М.: Книжный дом «Либроком», 2014.
См. также
Страница кафедры математических методов прогнозирования ВМК МГУ