Участник:Mpopova
Материал из MachineLearning.
Попова Мария Сергеевна, МФТИ, ФУПМ, 174 группа
Отчеты о научно-исследовательской работе
Весна 2014, 6-й семестр
Выбор оптимальной модели классификации по измерениям акселерометра
В данной работе решается проблема построения оптимальных устойчивых моделей в задаче классификации физической активности человека. Каждый тип физической активности конкретного человека описывается набором признаков, сгенерированных по временным рядам с акселерометра. В условиях мультиколлинеарности признаков выбор устойчивых моделей классификации затруднен из-за необходимости оценки большого числа параметров этих моделей. Оценка оптимального значения параметров также затруднена в связи с тем, что функция ошибок имеет большое количество локальных минимумов в пространстве параметров. В работе исследуются модели, принадлежащие классу двуслойных нейронных сетей. Ставится задача нахождения Парето оптимального фронта на множестве допустимых моделей. Предлагаются критерии оптимального, последовательного и устойчивого прореживания нейронной сети, критерий наращивания сети, а также строится стратегия пошаговой модификации модели с использованием предложенных критериев. В вычислительном эксперименте модели, порождаемые предложенной стратегией, сравниваются по трем критериям качества - сложность, точность и устойчивость.
Публикация
- Попова М.С., Стрижов В.В. Выбор оптимальной модели классификации по измерениям акселерометра // Информатика и ее применения. — (подано в журнал).
Осень 2014, 7-й семестр
Многоклассовая классификация временных рядов с помощью методов Deep Learning
Данная работа посвящена построению модели для многоклассовой классификации временных рядов с использованием методов Deep Learning. Модель строится как суперпозиция ограниченных машин Больцмана и автокодировщиков, которые обучаются без учителя. Последним уровнем в суперпозиции является двухслойная нейронная сеть, которая обучается по меткам классов и является классификатором. В качестве тестовой задачи решается задача классификации физической активности человека по показаниям акселерометра. Для точности классификации строится ROC кривая и вычисляется значение AUC.
Технический отчёт
Попова М.С. Time series multiclass classification using methods of Deep Learning, Технический отчёт // Сервер вычислительных экспериментов mvr.jmlda.org (дата обращения: 30.12.2014).
Доклад на научной конференции
57-я международная научная конференция МФТИ. 24-29 ноября 2014г. Доклад "Выбор оптимальной модели классификации по измерениям акселерометра".