Участник:Василий Ломакин/Критерий Уилкоксона двухвыборочный

Материал из MachineLearning.

Перейти к: навигация, поиск

Критерий Уилкоксона двухвыборочныйнепараметрический статистический критерий, используемый для проверки гипотезы о равенстве средних двух независимых выборок. Выборки взяты из закона распределения, отличного от нормального, либо данные измерены с использованием нечисловой шкалы. Метод следует использовать в случае, когда нет информации о дисперсии выборок. В случае равных дисперсий следует применять более мощный [[ U-критерий Манна-Уитни. Имеется аналог критерия Уилкоксона для случая связанных наблюдений.

Содержание

[убрать]

Пример задачи

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}.

Дополнительные предположения:

Нулевая гипотеза H_0:\; обе выборки имеют одинаковое распеределение, то есть извлечены из одной генеральной совокупности. Следствием этого является равенство средних.

Статистика критерия:

Свойства и границы применимости критерия

История

Литература

  1. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
  2. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.

Ссылки

Личные инструменты