Участник:Василий Ломакин/Критерий Уилкоксона двухвыборочный
Материал из MachineLearning.
Критерий Уилкоксона двухвыборочный — непараметрический статистический критерий, используемый для проверки гипотезы о равенстве средних двух независимых выборок. Выборки взяты из закона распределения, отличного от нормального, либо данные измерены с использованием нечисловой шкалы. Метод следует использовать в случае, когда нет информации о дисперсии выборок. В случае равных дисперсий следует применять более мощный [[ U-критерий Манна-Уитни. Имеется аналог критерия Уилкоксона для случая связанных наблюдений.
Содержание[убрать] |
Пример задачи
Описание критерия
Заданы две выборки .
Дополнительные предположения:
- обе выборки простые, объединённая выборка независима;
Нулевая гипотеза обе выборки имеют одинаковое распеределение, то есть извлечены из одной генеральной совокупности. Следствием этого является равенство средних.
Статистика критерия:
Свойства и границы применимости критерия
История
Литература
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
Ссылки
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- [[Статистика (функция выборки)]