Обучение с подкреплением (курс лекций) / 2023
Материал из MachineLearning.
В отличие от классического машинного обучения, в обучении с подкреплением алгоритму на вход не поступает обучающая выборка. Вместо этого, обучение проводится "методом проб и ошибок": агент должен сам собрать данные в ходе взаимодействия с окружающим миром (средой) и на основе собранного опыта научиться максимизировать получаемый отклик - подкрепление, или награду. Курс направлен на изучение алгоритмов последних лет, показывающих state-of-the-art результаты во многих задачах дискретного и непрерывного управления за счёт совмещения классической теории с парадигмой глубинного обучения.
Читается для магистров 617-й, 621-й, 522-й и 622-й групп.
Преподаватели: Кропотов Дмитрий, Темирчев Павел, Илья Синильщиков, Алексей Медведев, Дмитрий Медведев, Владимир Ипполитов, Миньчуань Сюй, Илья Иванов.
Расписание: Занятия проводятся в смешанном онлайн/офлайн формате. Распределение см. в расписании занятий ниже.
- лекции: по пятницам в 14-35, ауд. 526б
- семинары: по пятницам в 16:20, ауд. 526б
Канал в Telegram: ссылка
Видеозаписи занятий: TBA
Содержание[убрать] |
Критерии оценки
В курсе предусмотрено шесть лабораторных работ в формате ноутбуков и письменный экзамен. Итоговая оценка по курсу в 10-балльной шкале рассчитывается по формуле:
Итоговая оценка = Округл.вверх (0.3 * Экз + 0.7 * Лаб)
Оценке 5 в пятибалльной шкале соответствует оценка 8 и выше, оценке 4 - оценка [6, 8), оценке 3 - промежуток [4, 6). Помимо баллов необходимо также выполнить следующие условия:
Итог | Необходимые условия |
---|---|
5 | сдано не менее 5 заданий, оценка за экзамен >= 6 |
4 | сдано не менее 4 заданий, оценка за экзамен >= 4 |
3 | сдано не менее 3 заданий, оценка за экзамен >= 4 |
Домашние задания
Максимальный балл за лабораторные - 100 баллов; итоговая оценка за лабораторные получается делением на десять. За некоторые задания можно будет получить бонусные баллы, о чем будет объявляться при выдаче задания.
Сдавать лабораторные можно в течение недели после мягкого дедлайна (работы сданные в этот период облагаются штрафом: см. таблицу ниже). Лабораторные, сданные позже недели после мягкого дедлайна, не приносят баллов, но учитываются в необходимых условиях для конкретной оценки (см. выше).
Лабораторная | Ориентировочная дата выдачи (может быть изменена!) | Срок | Баллы | Штраф за день опоздания |
---|---|---|---|---|
Deep Crossentropy Method | 8 сентября | 1 неделя | 10 | -0.3 |
Policy Iteration + Theory | 15 сентября | 1 неделя | 10 | -0.3 |
DQN | 29 сентября | 2 недели | 20 | -0.6 |
A2C | 20 октября | 2 недели | 20 | -0.6 |
PPO | 10 ноября | 2 недели | 20 | -0.6 |
MCTS | 1 декабря | 2 недели | 20 | -0.6 |
Расписание занятий
Дата | Формат | Занятие | Материалы | Дополнительные материалы |
---|---|---|---|---|
Лекция 8 сентября | Онлайн | Введение в курс. Кросс-энтропийный метод (CEM). | ||
Семинар 8 сентября | Онлайн | Библиотека OpenAI gym. Реализация табличного кросс-энтропийного метода. | ||
Лекция 15 сентября | Онлайн | Динамическое программирование. Value Iteration, Policy Iteration. |
| |
Семинар 15 сентября | Онлайн | Реализация Value Iteration. | ||
Лекция 22 сентября | Очно | Табличные методы. TD-обучение, Q-обучение. |
| |
Семинар 22 сентября | Онлайн | Табличное Q-обучение. | ||
Лекция 29 сентября | Очно | Deep Q-Network (DQN) и его модификации. | ||
Лекция 6 октября | Очно | Distributional RL. Quantile Regression DQN (QR-DQN). | ||
Лекция 13 октября | Очно | Многорукие бандиты, внутренняя мотивация для исследования среды. | ||
Лекция 20 октября | Очно | Policy gradient подход. Advantage Actor-Critic (A2C). |
| |
Семинар 20 октября | Онлайн | Реализация policy gradient | ||
Лекция 27 октября | Онлайн | Trust-Region Policy Optimization (TRPO). | ||
Лекция 3 ноября | Очно | Proximal Policy Optimization (PPO) и Generalized Advantage Estimation (GAE). | ||
Лекция 10 ноября | Очно | DDPG, Soft Actor Critic. | ||
Лекция 17 ноября | Очно | Имитационное обучение. Обратное обучение с подкреплением. | ||
Лекция 24 ноября | Очно | Monte Carlo Tree Search. AlphaZero, MuZero. | ||
Лекция 1 декабря | Онлайн | Linear Quadratic Regulator (LQR). Model-based RL. Dreamer. |
Страницы курса прошлых лет
2020-й год
2021-й год
2022-й год