Марковский алгоритм кластеризации
Материал из MachineLearning.
(→Марковский алгоритм кластеризации) |
(→Марковский алгоритм кластеризации) |
||
Строка 4: | Строка 4: | ||
== Марковский алгоритм кластеризации == | == Марковский алгоритм кластеризации == | ||
- | |||
Строка 13: | Строка 12: | ||
Данный алгоритм был разработан в рамках PhD работы Van Dongen в 2000 году в центре математических и компьютерных наук в Нидерландах. | Данный алгоритм был разработан в рамках PhD работы Van Dongen в 2000 году в центре математических и компьютерных наук в Нидерландах. | ||
- | + | ||
- | + | Термины и определения | |
- | + | ||
- | + | Граф состоит из двух типов объектов 1) вершин(узлов)- V | |
- | + | 2)ребер (пар вершин соединенных между собой) - E. Более формальная запись G:=(V,E) | |
- | + | ||
- | + | Кроме этого каждый граф можно представить в виде матрицы смежности (M) размером V*V. Где Mij= растоянию | |
- | + | между узлом i и узлом j. | |
- | + | ||
- | + | Ckexfqyjve j,[jle d uhfat | |
- | + | ||
- | # | + | |
- | + | Что такое кластер в графе? Возможно дать два близких понятия: | |
- | + | #Длинна пути между узлами одного кластера мало по сравнению с длинно пути между точками пренадлежажащими одному кластеру. | |
+ | #При случайном обходе графа, прежде чем покинуть кластер будут посещены многоие из его вершин | ||
+ | |||
+ | |||
+ | |||
+ | Графы часто возникают при упрощении сложных систем. К примеру в виде графа удобно отображать: | ||
+ | #взамосвязи различных сайтов в интернете | ||
+ | #Социальные сети (сети контактов) | ||
+ | #Генные сети в молекулярной биологии | ||
+ | #порты, аэропорты, города (в качестве узлов графа)и пути их соединяюющие (в качестве ребер). | ||
+ | |||
+ | Следует отметить что случайное блуждание в графе - это конечная цепь Маркова. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | В качестве метрики растояния можно использовать суммы длин ребер (или их количества) между двумя точками, что по сути является евклидовой метрикой. | ||
+ | |||
---- | ---- | ||
Строка 116: | Строка 132: | ||
14 (1995), pp. 154–162. | 14 (1995), pp. 154–162. | ||
+ | |||
+ | |||
+ | |||
+ | 3.2.1 Приложения | ||
+ | #умножение разреженных матриц (распределения строк по разным процессора), параллельные вычисления, численное решение уравнений в частных производных . | ||
+ | Разреженное матричное умножение требует м. | ||
+ | Минимизация объема связи между процессорами - это разбиение графа | ||
+ | проблема. [A. Gupta, Fast and effective algorithms for graph partitioning and sparsematrix ordering, IBM Journal of Research & Development, 41 (1997). http://www.research.ibm.com/journal/rd/411/gupta.html]. | ||
+ | Решатели PDE действуют на сетке или сетке, и параллельное вычисление такого решателя требует | ||
+ | разделение сетки, опять же, чтобы минимизировать связь между процессами | ||
+ | сорс [53]. | ||
+ | планирование и размещение микросхем [C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: a survey, Integration: the VLSI Journal, 19 (1995), pp. 1–81.] | ||
+ | • Оценка требований к проводке и производительности системы в синтезаторе высокого уровня. | ||
+ | Сис и поэтажное планирование. | ||
+ | #На сегодняшний день данный алгоритм применяется для данных в молекулярной биологии (выделение групп генов) [S. Brohee and J. van Helden. Evaluation of clustering algorithms for protein- | ||
+ | protein interaction networks. BMC Bioinformatics, 7, 2006.][J. Vlasblom and S.J. Wodak. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC bioinformatics, 10(1):99, 2009.] | ||
+ | #анилизе изображений. | ||
Список используемой литературы | Список используемой литературы |
Версия 18:06, 12 декабря 2018
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Марковский алгоритм кластеризации
Марковский алгоритм кластеризации (MCL, Markov Clustering Algorithm) — алкоритм кластерного анализа основанный на потоке (случайном блуждании) в графе. Изначально разработан для выделения кластеров в графе, однако может быть применен к любым объектам для которых задана матрица сходства/различия.
Данный алгоритм был разработан в рамках PhD работы Van Dongen в 2000 году в центре математических и компьютерных наук в Нидерландах.
Термины и определения
Граф состоит из двух типов объектов 1) вершин(узлов)- V 2)ребер (пар вершин соединенных между собой) - E. Более формальная запись G:=(V,E)
Кроме этого каждый граф можно представить в виде матрицы смежности (M) размером V*V. Где Mij= растоянию между узлом i и узлом j.
Ckexfqyjve j,[jle d uhfat
Что такое кластер в графе? Возможно дать два близких понятия:
- Длинна пути между узлами одного кластера мало по сравнению с длинно пути между точками пренадлежажащими одному кластеру.
- При случайном обходе графа, прежде чем покинуть кластер будут посещены многоие из его вершин
Графы часто возникают при упрощении сложных систем. К примеру в виде графа удобно отображать:
- взамосвязи различных сайтов в интернете
- Социальные сети (сети контактов)
- Генные сети в молекулярной биологии
- порты, аэропорты, города (в качестве узлов графа)и пути их соединяюющие (в качестве ребер).
Следует отметить что случайное блуждание в графе - это конечная цепь Маркова.
В качестве метрики растояния можно использовать суммы длин ребер (или их количества) между двумя точками, что по сути является евклидовой метрикой.
общее описание метода
Метод опирается на следующе допущение -
расстояния между узлами графа относящихся к одному кластеру, меньше чем растояние между узлами относящимся к различным кластерам. т.е. поток внутри одного кластера много больше чем между кластерами.
т.е. если усиливать поток там где он силен и ослаблять его там где он слаб то согласно парадигме кластеризации графа границы между различными кластерами будут исчезать. Таким образом будет выявлена кластерная структура графа.
Моделирование потока в графе осуществляется путем преобразования его в марковский граф (см. рисуйнок 1).
На первом шаге граф преобразуется в матрицу растояний между узлами (иное представления графа). На втором шаге происходит преобразование матрицы растояний в матрицу стохастических переходов между узлами. В примере используется нормирование значений в столбце однако может быть применен любой другой алгоритм.
После того как стохастическая матрица (марковский граф) получена, к ней последовательно применяются применяются две функции (Expansion, распространение) и (Inflation, накачивание) до тех пор пока матррица не перестанет менятся (см. рисуйнок 2).
1) expansion - разширяем поток из вершины на потенциальных участников кластера.
2) inflation - уменьшаем переходы между кластерами и увеличиваем внутри кластера.
расширение (expansion) - объединяет кластера, остабляет сильный ток и усиливает слабый.
инфляция (inflation) - сжимает кластера, усиливает сильный поток и ослабляет слабый.
Марковский алгоритм кластеризации — быстрый и масштабируемый алгоритм кластеризации, основанный на моделировании потока в графе.
Примеры способов кластеризации
Расмотрим работу данного метода на примере кластеризации простого графа и его смежной матрицы.
Возмем граф состоящий из 12 вершин и составим для него матрицу вероятностей переходов между узлами. Так как граф является не взвешенны вероятности перехода между соседними узлами и вероятность остаться в этом узле будет равна 1/(количество ребер смежных с вершиной + 1). Матрица представленна на рисунке 5. Таким образом мы получим матрицу. Процес MCL представлен на рисунке 5
итог по алгоритму
- Плюсы алгоритма
- Работает как с взвешенными, так и с невзвешенными графами
- Устойчив к шуму в данных
- Количество кластеров не указано заранее, но можно настроить степень детализации кластера
- Может находить кластера произвольной формы
- Минусы алгоритма
- Не нацелен находить перекрывающиеся кластеры (*)
- Не подходит для кластеров большого размера
- Часто кластеры получаются разного размера
- Время работы алгоритма в наихудшем случае Ο(V^3)
Дальнейшее развитие ,в 2012 году, метод получил как MLR-MCL R-MCL [Satuluri V. M. Scalable clustering of modern networks : дис. – The Ohio State University, 2012.]
В этих двух статьях двугой подход к кластеризации на графе:
L. Hagen and A. B. Kahng, A new approach to effective circuit clustering, in IEEE [91],
pp. 422–427.
C.-W. Yeh, C.-K. Cheng, and T.-T. Y. Lin, Circuit clustering using a stochastic flow injection
method, IEEE Transactions on Computer–Aided Design of Integrated Circuits and Systems,
14 (1995), pp. 154–162.
3.2.1 Приложения
- умножение разреженных матриц (распределения строк по разным процессора), параллельные вычисления, численное решение уравнений в частных производных .
Разреженное матричное умножение требует м. Минимизация объема связи между процессорами - это разбиение графа проблема. [A. Gupta, Fast and effective algorithms for graph partitioning and sparsematrix ordering, IBM Journal of Research & Development, 41 (1997). http://www.research.ibm.com/journal/rd/411/gupta.html]. Решатели PDE действуют на сетке или сетке, и параллельное вычисление такого решателя требует разделение сетки, опять же, чтобы минимизировать связь между процессами сорс [53]. планирование и размещение микросхем [C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: a survey, Integration: the VLSI Journal, 19 (1995), pp. 1–81.] • Оценка требований к проводке и производительности системы в синтезаторе высокого уровня. Сис и поэтажное планирование.
- На сегодняшний день данный алгоритм применяется для данных в молекулярной биологии (выделение групп генов) [S. Brohee and J. van Helden. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics, 7, 2006.][J. Vlasblom and S.J. Wodak. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC bioinformatics, 10(1):99, 2009.]
- анилизе изображений.
Список используемой литературы
1) Van Dongen, S. 2000. “Graph clustering by flow simulation.” Ph.D. thesis, University of Utrecht, The Netherlands
2) https://www.micans.org/mcl/index.html
3) Li, Li, Christian J. Stoeckert, and David S. Roos. "OrthoMCL: identification of ortholog groups for eukaryotic genomes." Genome research 13.9 (2003): 2178-2189.
4)Satuluri, Venu, Srinivasan Parthasarathy, and Duygu Ucar. "Markov clustering of protein interaction networks with improved balance and scalability." Proceedings of the first ACM international conference on bioinformatics and computational biology. ACM, 2010.