Участник:Andriygav
Материал из MachineLearning.
(→Весна 2018, 6й семестр) |
м |
||
Строка 13: | Строка 13: | ||
==Осень 2018, 7й семестр== | ==Осень 2018, 7й семестр== | ||
+ | |||
+ | |||
+ | == Выступления на конференциях и семинарах == |
Версия 08:05, 14 октября 2018
Содержание |
Грабовой Андрей
- МФТИ, ФУПМ
- Интеллектуальные системы
- Интеллектуальный анализ данных
- E-mail: grabovoy.av@phystech.edu andriy.graboviy@mail.ru
Весна 2018, 6й семестр
Автоматическое определение релевантности параметров нейросети
Работа посвящена оптимизации структуры нейронной сети. Предполагается, что число параметров нейроной сети можно существенно снизить без значимой потери качества и без значимого повышения дисперсии функции ошибки. Предлагается метод прореживания параметров нейронной сети, основанный на автоматическом определении релевантности параметров. Для определения релевантности параметров, предлагается проанализировать ковариационую матрицу апостериорного распределения параметров и удалить из нейросети наименее релевантные и мультиколлинеарные параметры. Для определения мультиколлинеарности предлагается использовать метод Белсли. Для анализа качества представленного алгоритма проводятся эксперименты на выборке Boston Housing, а также на синтетических данных.