Однослойный персептрон (пример)
Материал из MachineLearning.
 (→Смотри также)  | 
				|||
| Строка 1: | Строка 1: | ||
{{TOCright}}  | {{TOCright}}  | ||
| - | '''Однослойный персептрон''' — это модель   | + | '''Однослойный персептрон''' — это модель [[нейрон]]а, простейший пример [[нейронная сеть|нейронной сети]]. Фактически представляет собой [[Линейный классификатор | линейный пороговый классификатор]].  | 
| + | <ref>Желательно переписать введение. Неясно, что такое модель нейрона. В каком смысле однослойный персептрон -- простейший пример нейронной сети? Если возможно, более детально.</ref>  | ||
| + | <ref>Обязательно проверить грамматику. Исправил несколько ошибок, но специально их поиском, конечно, не занимался.</ref>  | ||
| - | == Постановка задачи линейного разделения классов==  | + | == Постановка задачи линейного разделения классов ==  | 
| - | Пусть <tex>X</tex> - пространство объектов; <tex>Y</tex> - множество допустимых ответов. Будем считать, что <tex>x = (x^0,x^1,\dots,x^n) \in \{-1\}\times\mathbb{R}^n</tex>, где <tex>x^j = f_j(x), j \geq 1</tex> - признаковое описание объекта, а <tex>x_0 = -1</tex> - дополнительный константный признак; <tex>Y = \{0,1\}</tex>. Задана обучающая выборка <tex>\{(\mathbf{x}_i,y_i)\}_{i=1}^\ell</tex>. Значения признаков <tex>x^j = f_j(x)</tex> рассматриваются как импульсы, поступающие на вход нейрона, которые складываются с весами <tex>w_1,\dots,w_n</tex>. Если суммарный импульс превышает порог активации <tex>w_0</tex>, то нейрон возбуждается  | + | Пусть <tex>X</tex> - пространство объектов;  | 
| + | <ref> Эта буква нигде далее не используется. Неясно, зачем она введена.</ref>  | ||
| + | <ref> Если не используются аксиомы пространства, желательно использовать слово множество. См. напр. определения предгильбертова или Банахова пространства.</ref>  | ||
| + | |||
| + | <tex>Y</tex> - множество допустимых ответов. Будем считать, что <tex>x = (x^0,x^1,\dots,x^n) \in \{-1\}\times\mathbb{R}^n</tex>, где <tex>x^j = f_j(x), j \geq 1</tex> - признаковое описание объекта, а <tex>x_0 = -1</tex> - дополнительный константный признак; <tex>Y = \{0,1\}</tex>. Задана обучающая выборка <tex>\{(\mathbf{x}_i,y_i)\}_{i=1}^\ell</tex>. Значения признаков <tex>x^j = f_j(x)</tex> рассматриваются как импульсы, поступающие на вход нейрона, которые складываются с весами <tex>w_1,\dots,w_n</tex>. Если суммарный импульс превышает порог активации <tex>w_0</tex>, то нейрон возбуждается  | ||
и выдаёт на выходе 1, иначе выдаётся 0. Таким образом, нейрон вычисляет <tex>n</tex>-арную булеву функцию вида   | и выдаёт на выходе 1, иначе выдаётся 0. Таким образом, нейрон вычисляет <tex>n</tex>-арную булеву функцию вида   | ||
<center><tex>a(x) = \varphi(\sum_{i=1}^{\ell}w_jx^j-w_0) = \varphi(\langle w,x \rangle)</tex>, где <tex>\varphi(z)=[z \geq 0]</tex></center>  | <center><tex>a(x) = \varphi(\sum_{i=1}^{\ell}w_jx^j-w_0) = \varphi(\langle w,x \rangle)</tex>, где <tex>\varphi(z)=[z \geq 0]</tex></center>  | ||
Требуется найти значения параметров, при которых алгоритм наилучшим образом аппроксимирует целевую зависимость, заданную на объектах обучающей выборки.  | Требуется найти значения параметров, при которых алгоритм наилучшим образом аппроксимирует целевую зависимость, заданную на объектах обучающей выборки.  | ||
| - | + | <ref>Уточнить что такое "наилучшим образом". Для этого нужно перенести сюда первые два предложения следующего раздел и откорректировать.</ref>  | |
| + | <ref>Мы различаем вектор <tex>\mathbf{x}</tex> и скаляр <tex>x</tex>, хоть это на данном движке Wiki плохо видно. Нужно исправить везде.</ref>  | ||
== Описание алгоритма ==  | == Описание алгоритма ==  | ||
Для настройки вектора весов воспользуемся методом стохастического градиента. Возьмем квадратичную функцию потерь: <tex>Q(w) = \sum_{i=1}^{\ell}(a(x_i)-y_i)^2</tex>, а в качестве функции активации возьмем сигмоидную функцию: <tex>\varphi(z) = \frac{1}{1+e^{-z}}</tex>. Согласно принципу [[Минимизация эмпирического риска | минимизации эмпирического риска]] задача сводится к поиску вектора, доставляющего минимум функционалу <tex> Q(w) \rightarrow \min_w</tex>. Применим для минимизации метод градиентного спуска:   | Для настройки вектора весов воспользуемся методом стохастического градиента. Возьмем квадратичную функцию потерь: <tex>Q(w) = \sum_{i=1}^{\ell}(a(x_i)-y_i)^2</tex>, а в качестве функции активации возьмем сигмоидную функцию: <tex>\varphi(z) = \frac{1}{1+e^{-z}}</tex>. Согласно принципу [[Минимизация эмпирического риска | минимизации эмпирического риска]] задача сводится к поиску вектора, доставляющего минимум функционалу <tex> Q(w) \rightarrow \min_w</tex>. Применим для минимизации метод градиентного спуска:   | ||
| - | <center><tex>w:=w - \eta \nabla Q(w)</tex>  | + | <center><tex>w:=w - \eta \nabla Q(w),</tex></center>   | 
где <tex>\eta > 0</tex> величина шага в направлении антиградиента, называемая также темпом обучения (learning rate). Будем выбирать прецеденты <tex>(x_i, y_i)</tex> по одному в случайном порядке, для каждого делать градиентный шаг и сразу обновлять вектор весов:   | где <tex>\eta > 0</tex> величина шага в направлении антиградиента, называемая также темпом обучения (learning rate). Будем выбирать прецеденты <tex>(x_i, y_i)</tex> по одному в случайном порядке, для каждого делать градиентный шаг и сразу обновлять вектор весов:   | ||
| - | <center><tex>w:= w - \eta(a(x_i,w)-y_i)(1-\varphi(\langle w,x_i \rangle))\varphi(\langle w,x_i \rangle)x_i</tex>  | + | <center><tex>w:= w - \eta(a(x_i,w)-y_i)(1-\varphi(\langle w,x_i \rangle))\varphi(\langle w,x_i \rangle)x_i.</tex></center>   | 
| + | <ref>Скобки трудно читать, советую <tex>\phi\bigl(f(x)\bigr).</tex></ref>  | ||
| + | Значение функционала оцениваем: <center><tex>Q = (1-\lambda)Q+\lambda \eps_i,</tex></center> где <tex>\eps_i = (a(x_i,w)-y_i)^2</tex>.  | ||
| + | <ref>Написать, какой смысл несут <tex>\eta, \lambda</tex> и как они задаются.</ref>  | ||
Процедура останавливается после того, как изменение значения функционала функционала <tex>Q</tex> становится меньше заданной константы: <center><tex>|Q_n - Q_{n-1}|< \delta</tex></center>  | Процедура останавливается после того, как изменение значения функционала функционала <tex>Q</tex> становится меньше заданной константы: <center><tex>|Q_n - Q_{n-1}|< \delta</tex></center>  | ||
| Строка 19: | Строка 29: | ||
Показана работа алгоритма в серии задач, основанных как на реальных, так и на модельных данных.  | Показана работа алгоритма в серии задач, основанных как на реальных, так и на модельных данных.  | ||
| - | + | === Пример на реальных данных: ирисы ===  | |
| - | Из   | + | Из задачи о классификации ирисов выбраны 2 вида ирисов: Versicolour и Virginica, которые предлагается классифицировать по двум признакам — длине и ширине лепестка. Данные содержат информацию о 50 цветках каждого вида[http://mlalgorithms.svn.sourceforge.net/viewvc/mlalgorithms/OneLayerPerceptron/iris.txt iris.txt].  | 
[[Изображение:Iris.jpg|Iris.jpg]]  | [[Изображение:Iris.jpg|Iris.jpg]]  | ||
[[Изображение:iris.png|300px]]  | [[Изображение:iris.png|300px]]  | ||
| - | На графике показаны результаты классификации. По оси   | + | На графике показаны результаты классификации. По оси абсцисс отложено значение одного признака (длина лепестка в см.), а по оси ординат — значение второго признака (ширина лепестка в см.). Различные классы показаны крестиками различных цветов, а результат классификации показан кружочками соотвествующего цвета. Зеленой линией показана граница между классами, построенная алгоритмом.   | 
<source lang="matlab">  | <source lang="matlab">  | ||
%load data  | %load data  | ||
load 'iris.txt';  | load 'iris.txt';  | ||
x = iris;  | x = iris;  | ||
| - | x(:,1) = []; %eliminating first two attributes  | + | x(:,1:2) = []; %eliminating first two attributes  | 
| - | + | ||
y = [repmat(0,50,1);repmat(1,50,1)]; %creating class labels  | y = [repmat(0,50,1);repmat(1,50,1)]; %creating class labels  | ||
| Строка 54: | Строка 63: | ||
</source>  | </source>  | ||
| - | Заметим, что данные линейно не разделимы, но алгоритм показывает хороший результат, допустив   | + | Заметим, что данные линейно не разделимы, но алгоритм показывает хороший результат, допустив 5 ошибок классификации.  | 
| - | + | === Модельные данные (простой вариант): 2 нормально распределенных класса линейно разделимы ===  | |
<source lang="matlab">  | <source lang="matlab">  | ||
| Строка 94: | Строка 103: | ||
[[Изображение:simple.png|300px]]  | [[Изображение:simple.png|300px]]  | ||
| - | Алгоритм   | + | Алгоритм не допустил при классификации ни одной ошибки.  | 
== Исходный код ==  | == Исходный код ==  | ||
| - | Скачать листинги алгоритмов можно здесь [http://mlalgorithms.svn.sourceforge.net/viewvc/mlalgorithms/OneLayerPerceptron/  | + | Скачать листинги алгоритмов можно здесь [http://mlalgorithms.svn.sourceforge.net/viewvc/mlalgorithms/OneLayerPerceptron/ Func.m, OneLayerPerc.m, PercTest.m, GetNormClass.m].  | 
== Смотри также ==  | == Смотри также ==  | ||
| - | [[Линейный классификатор]]  | + | * [[Линейный классификатор]]  | 
| + | * <ref>На этом сайте есть еще статья или несколько по данной теме. Желательно их найти и сделать ссылки.</ref>  | ||
| - | == Литература ==  | + | == Литература ==   | 
| + | * <ref>Желательно пополнить список литературы.</ref>  | ||
* К. В. Воронцов, Лекции по линейным алгоритмам классификации  | * К. В. Воронцов, Лекции по линейным алгоритмам классификации  | ||
* Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.  | * Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.  | ||
{{Задание|Максим Панов|В.В. Стрижов|28 мая 2009}}  | {{Задание|Максим Панов|В.В. Стрижов|28 мая 2009}}  | ||
[[Категория:Учебные материалы]]  | [[Категория:Учебные материалы]]  | ||
| + | |||
| + | |||
| + | == Замечания ==   | ||
| + | <references/>  | ||
Версия 17:52, 2 мая 2009
 
  | 
Однослойный персептрон — это модель нейрона, простейший пример нейронной сети. Фактически представляет собой линейный пороговый классификатор. [1] [1]
Постановка задачи линейного разделения классов
Пусть  - пространство объектов;
[1]
[1]
 - множество допустимых ответов. Будем считать, что 
, где 
 - признаковое описание объекта, а 
 - дополнительный константный признак; 
. Задана обучающая выборка 
. Значения признаков 
 рассматриваются как импульсы, поступающие на вход нейрона, которые складываются с весами 
. Если суммарный импульс превышает порог активации 
, то нейрон возбуждается
и выдаёт на выходе 1, иначе выдаётся 0. Таким образом, нейрон вычисляет 
-арную булеву функцию вида 
Требуется найти значения параметров, при которых алгоритм наилучшим образом аппроксимирует целевую зависимость, заданную на объектах обучающей выборки. [1] [1]
Описание алгоритма
Для настройки вектора весов воспользуемся методом стохастического градиента. Возьмем квадратичную функцию потерь: , а в качестве функции активации возьмем сигмоидную функцию: 
. Согласно принципу  минимизации эмпирического риска задача сводится к поиску вектора, доставляющего минимум функционалу 
. Применим для минимизации метод градиентного спуска: 
где  величина шага в направлении антиградиента, называемая также темпом обучения (learning rate). Будем выбирать прецеденты 
 по одному в случайном порядке, для каждого делать градиентный шаг и сразу обновлять вектор весов: 
Вычислительный эксперимент
Показана работа алгоритма в серии задач, основанных как на реальных, так и на модельных данных.
Пример на реальных данных: ирисы
Из задачи о классификации ирисов выбраны 2 вида ирисов: Versicolour и Virginica, которые предлагается классифицировать по двум признакам — длине и ширине лепестка. Данные содержат информацию о 50 цветках каждого видаiris.txt.
На графике показаны результаты классификации. По оси абсцисс отложено значение одного признака (длина лепестка в см.), а по оси ординат — значение второго признака (ширина лепестка в см.). Различные классы показаны крестиками различных цветов, а результат классификации показан кружочками соотвествующего цвета. Зеленой линией показана граница между классами, построенная алгоритмом.
%load data load 'iris.txt'; x = iris; x(:,1:2) = []; %eliminating first two attributes y = [repmat(0,50,1);repmat(1,50,1)]; %creating class labels %plotting data plot(x(y == 0,1),x(y == 0,2),'*r'); hold on plot(x(y == 1,1),x(y == 1,2),'*b'); %invoke One layer perceptron algorithm w = OneLayerPerc(x,y); %getting classification y = PercTest(x,w); %plotting resulting classification plot(x(y == 0,1),x(y == 0,2),'or'); plot(x(y == 1,1),x(y == 1,2),'ob'); plot([w(3)/w(1),0],[0,w(3)/w(2)],'g'); hold off;
Заметим, что данные линейно не разделимы, но алгоритм показывает хороший результат, допустив 5 ошибок классификации.
Модельные данные (простой вариант): 2 нормально распределенных класса линейно разделимы
%generating 2 sample normal classes x = GetNormClass(100,[0,0],[1,1]); s = GetNormClass(100,[4,4],[1,1]); x = [x;s]; y = [repmat(1,100,1);repmat(0,100,1)]; %invoke One layer perceptron algorithm w = OneLayerPerc(x,y); %generating control data with the same distribution x = GetNormClass(100,[0,0],[1,1]); s = GetNormClass(100,[4,4],[1,1]); x = [x;s]; %plotting control data plot(x(:,1),x(:,2),'*r'); hold on plot(s(:,1),s(:,2),'*b'); %getting classification y = PercTest(x,w); %plotting classified data plot(x(y == 0,1),x(y == 0,2),'ob'); plot(x(y == 1,1),x(y == 1,2),'or'); plot([w(3)/w(1),0],[0,w(3)/w(2)],'g'); hold off
Алгоритм не допустил при классификации ни одной ошибки.
Исходный код
Скачать листинги алгоритмов можно здесь Func.m, OneLayerPerc.m, PercTest.m, GetNormClass.m.
Смотри также
Литература
- [1]
 - К. В. Воронцов, Лекции по линейным алгоритмам классификации
 - Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.
 
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 


