Участник:Tatarchuk
Материал из MachineLearning.
(Различия между версиями)
(Содержимое страницы заменено на «Tatarchuk '''Татарчук Александр Игоревич''' = S...») |
(→Selective Support Vector Machines) |
||
Строка 3: | Строка 3: | ||
= Selective Support Vector Machines = | = Selective Support Vector Machines = | ||
+ | === Description === | ||
+ | '''Authors''' | ||
+ | V. Mottl (vmottl@ya.ru) | ||
+ | A. Tatarchuk (aitech@ya.ru) | ||
+ | A. Eliseev (andreyel@gmail.com) | ||
+ | |||
+ | '''Developed at''' | ||
+ | Computing Center of Academy of Sceince, Moscow, Russia | ||
+ | |||
+ | '''Version''' 1.0 | ||
+ | |||
+ | '''Date''' 14.10.2008 | ||
+ | |||
=== Overview === | === Overview === | ||
- | === | + | |
- | === | + | SelSVMs is library of direct modifications of classical Support Vector Machine provided with controlled selectivity property of feature/kernel selection. |
+ | |||
+ | The main features of the algorithms are the following: | ||
+ | |||
+ | * work on small training sets with large number of features/kernels; | ||
+ | * provide feature selection with controlled selectivity level (numeric parameter); | ||
+ | * use Matlab optimization solver and Mosek solver; | ||
+ | * support precompiled kernels; | ||
+ | * return a posteriori probability estimates; | ||
+ | |||
+ | === How to use === | ||
+ | |||
+ | === Matlab code === | ||
+ | |||
+ | === Publications === |
Версия 11:31, 14 октября 2008
Татарчук Александр Игоревич
Содержание |
Selective Support Vector Machines
Description
Authors V. Mottl (vmottl@ya.ru) A. Tatarchuk (aitech@ya.ru) A. Eliseev (andreyel@gmail.com)
Developed at Computing Center of Academy of Sceince, Moscow, Russia
Version 1.0
Date 14.10.2008
Overview
SelSVMs is library of direct modifications of classical Support Vector Machine provided with controlled selectivity property of feature/kernel selection.
The main features of the algorithms are the following:
- work on small training sets with large number of features/kernels;
- provide feature selection with controlled selectivity level (numeric parameter);
- use Matlab optimization solver and Mosek solver;
- support precompiled kernels;
- return a posteriori probability estimates;