Участник:Tatarchuk

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Содержимое страницы заменено на «Tatarchuk '''Татарчук Александр Игоревич''' = S...»)
(Selective Support Vector Machines)
Строка 3: Строка 3:
= Selective Support Vector Machines =
= Selective Support Vector Machines =
 +
=== Description ===
 +
'''Authors'''
 +
V. Mottl (vmottl@ya.ru)
 +
A. Tatarchuk (aitech@ya.ru)
 +
A. Eliseev (andreyel@gmail.com)
 +
 +
'''Developed at'''
 +
Computing Center of Academy of Sceince, Moscow, Russia
 +
 +
'''Version''' 1.0
 +
 +
'''Date''' 14.10.2008
 +
=== Overview ===
=== Overview ===
-
=== Papers ===
+
 
-
=== Soft ===
+
SelSVMs is library of direct modifications of classical Support Vector Machine provided with controlled selectivity property of feature/kernel selection.
 +
 
 +
The main features of the algorithms are the following:
 +
 
 +
* work on small training sets with large number of features/kernels;
 +
* provide feature selection with controlled selectivity level (numeric parameter);
 +
* use Matlab optimization solver and Mosek solver;
 +
* support precompiled kernels;
 +
* return a posteriori probability estimates;
 +
 
 +
=== How to use ===
 +
 
 +
=== Matlab code ===
 +
 
 +
=== Publications ===

Версия 11:31, 14 октября 2008

Татарчук Александр Игоревич

Содержание

Selective Support Vector Machines

Description

Authors V. Mottl (vmottl@ya.ru) A. Tatarchuk (aitech@ya.ru) A. Eliseev (andreyel@gmail.com)

Developed at Computing Center of Academy of Sceince, Moscow, Russia

Version 1.0

Date 14.10.2008


Overview

SelSVMs is library of direct modifications of classical Support Vector Machine provided with controlled selectivity property of feature/kernel selection.

The main features of the algorithms are the following:

  • work on small training sets with large number of features/kernels;
  • provide feature selection with controlled selectivity level (numeric parameter);
  • use Matlab optimization solver and Mosek solver;
  • support precompiled kernels;
  • return a posteriori probability estimates;

How to use

Matlab code

Publications

Личные инструменты