Математические методы прогнозирования (кафедра ВМиК МГУ)/Кафедральные курсы
Материал из MachineLearning.
(Различия между версиями)
(+ практикум по СКВТ) |
|||
Строка 33: | Строка 33: | ||
|} | |} | ||
|style="border-left:1px #aaa solid"| | |style="border-left:1px #aaa solid"| | ||
- | |Тел. +7-495-939-4202<br>e-mail: [[Изображение:MMP_email.jpg]]<br>Ученый секретарь: [[Участник: | + | |Тел. +7-495-939-4202<br>e-mail: [[Изображение:MMP_email.jpg]]<br>Ученый секретарь: [[Участник:Kropotov|Д.А. Кропотов]]<br>'''[[Математические методы прогнозирования (кафедра ВМиК МГУ)/О кафедре#Контакты|Все контакты]]''' |
|} | |} | ||
---- | ---- | ||
Строка 95: | Строка 95: | ||
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ КУРСЫ ДЛЯ 4-ГО КУРСА В ВЕСЕННЕМ СЕМЕСТРЕ --> | |<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ КУРСЫ ДЛЯ 4-ГО КУРСА В ВЕСЕННЕМ СЕМЕСТРЕ --> | ||
{{Курс|Режим = {{{1}}}|Название = | {{Курс|Режим = {{{1}}}|Название = | ||
- | '''[[ГМ|Графические модели]]''', [[Участник:Dmitry Vetrov|Д.П. Ветров]] (лекции), [[Участник: | + | '''[[ГМ|Графические модели]]''', [[Участник:Dmitry Vetrov|Д.П. Ветров]] (лекции), [[Участник:Mfigurnov|М.В. Фигурнов]] (семинары) |
|Описание = | |Описание = | ||
}} | }} |
Версия 14:49, 8 октября 2014
|
|
| Тел. +7-495-939-4202 e-mail: Ученый секретарь: Д.А. Кропотов Все контакты |
Содержание |
Третий курс
- Математические методы распознавания образов: лекции (К.В. Воронцов), семинары (Е.А. Соколов)
- Изучаются методы классификации, регрессии, понижения размерности, кластеризации, как классические, так и новые, созданные за последние 10–15 лет. На материал данного курса опираются последующие кафедральные курсы.
- Прикладная алгебра (3-й поток), С.И. Гуров
- Обзорный курс для студентов 3-го потока по основам прикладной алгебры (группы, кольца, поля, частично-упорядоченные множества) и ее приложениям в кодировании и комбинаторике.
- Алгоритмы, модели, алгебры, А.Г. Дьяконов
Четвёртый курс
- Практикум на ЭВМ, А.И.Майсурадзе
- Байесовские методы в машинном обучении, Д.П. Ветров (лекции), М.В. Фигурнов (семинары)
- Прикладная алгебра (часть 2), С.И. Гуров
- Графические модели, Д.П. Ветров (лекции), М.В. Фигурнов (семинары)
- Прикладной статистический анализ данных, К.В. Воронцов, Е. Рябенко
- Обзорный курс, охватывающий дисперсионный, корреляционный, регрессионный анализ, анализ временных рядов и прогнозирование, анализ выживаемости, анализ панельных данных, выборочный анализ. Цели курса — связать математическую статистику с практическими приложениями в различных предметных областях, научить студентов правильно применять методы прикладной статистики.
Пятый курс
- Прикладной статистический анализ данных, К.В. Воронцов, Е. Рябенко
- Обзорный курс, охватывающий дисперсионный, корреляционный, регрессионный анализ, анализ временных рядов и прогнозирование, анализ выживаемости, анализ панельных данных, выборочный анализ. Цели курса — связать математическую статистику с практическими приложениями в различных предметных областях, научить студентов правильно применять методы прикладной статистики.
- Практикум по суперкомпьютерным вычислительным технологиям, А.И. Майсурадзе