Алгоритм AnyBoost
Материал из MachineLearning.
(→Описание алгоритма) |
|||
Строка 5: | Строка 5: | ||
'''Алгоритм AnyBoost''' | '''Алгоритм AnyBoost''' | ||
- | Рассмотрим задачу классификации | + | Рассмотрим задачу [[классификация|классификации]]. Пусть <tex>\mathcal{F}</tex> - множество базовых классификаторов, а <tex>\mathrm{lin}\mathcal{F})</tex> - множество всех линейных комбинаций из <tex>\mathcal{F}</tex>. |
- | На каждом шаге алгоритма к текущему классификатору <tex>F</tex> прибавляется базовый классификатор так, чтобы значение <tex>C(F+\ | + | На каждом шаге алгоритма к текущему классификатору <tex>F\in \mathcal{F}</tex> прибавляется базовый классификатор так, чтобы значение <tex>C(F+\varepsilon f)</tex> уменьшилось на некоторое значение <tex>\varepsilon</tex>. То есть в терминах функционального пространства для функции <tex>f</tex> ищется направление, в котором функция <tex>C(F+\varepsilon f)</tex> быстрее уменьшается. Наибольшее уменьшение функции потерь наблюдается в случае, когда <tex>f</tex> максимизирует величину <tex>-\left \langle \nabla C(F),f \right \rangle </tex>. |
# Инициализация <tex>F_0=0</tex>; | # Инициализация <tex>F_0=0</tex>; | ||
Строка 21: | Строка 21: | ||
Функция потерь <tex> C=\frac{1}{m}\sum^{m}_{i=1}{c(y_iF(x_i))}</tex> определяется через дифференцируемую функцию выброса <tex>c:\mathbb{R} \to \mathbb{R}</tex>. | Функция потерь <tex> C=\frac{1}{m}\sum^{m}_{i=1}{c(y_iF(x_i))}</tex> определяется через дифференцируемую функцию выброса <tex>c:\mathbb{R} \to \mathbb{R}</tex>. | ||
В этом случае <tex>-\left \langle \nabla C(F),f \right \rangle = -\frac{1}{m^2}\sum^{m}_{i=1}{y_if(x_i)c'(y_iF(x_i))} </tex>, и нахождение классификатора на каждом шаге будет равносильно нахождению классификатора <tex>f</tex>, минимизирующего взвешенную ошибку. | В этом случае <tex>-\left \langle \nabla C(F),f \right \rangle = -\frac{1}{m^2}\sum^{m}_{i=1}{y_if(x_i)c'(y_iF(x_i))} </tex>, и нахождение классификатора на каждом шаге будет равносильно нахождению классификатора <tex>f</tex>, минимизирующего взвешенную ошибку. | ||
+ | |||
==Методы голосования как частный случай AnyBoost== | ==Методы голосования как частный случай AnyBoost== | ||
Версия 19:49, 7 февраля 2010
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Алгоритм AnyBoost - класс алгоритмов, представляющих бустинг как процесс градиентного спуска. В основе алгоритма лежит последовательное уточнение функции, представляющей собой линейную комбинацию базовых классификаторов, с тем чтобы минимизировать функцию потерь. В класс AnyBoost входят практически все алгоритмы бустинг как частные случаи.
Содержание[убрать] |
Описание алгоритма
Алгоритм AnyBoost
Рассмотрим задачу классификации. Пусть - множество базовых классификаторов, а
- множество всех линейных комбинаций из
.
На каждом шаге алгоритма к текущему классификатору
прибавляется базовый классификатор так, чтобы значение
уменьшилось на некоторое значение
. То есть в терминах функционального пространства для функции
ищется направление, в котором функция
быстрее уменьшается. Наибольшее уменьшение функции потерь наблюдается в случае, когда
максимизирует величину
.
- Инициализация
;
- Для всех
пока не выполнено условие выхода из цикла;
- Получение нового классификатора
, увеличивающего значение
;
- Если
выходим из цикла и возвращаем
;
- Выбор веса
- Уточнение классификатора
- Получение нового классификатора
- Возвращаем
В случае бинарного классификатора .
- обучающая выборка.
Функция потерь
определяется через дифференцируемую функцию выброса
.
В этом случае
, и нахождение классификатора на каждом шаге будет равносильно нахождению классификатора
, минимизирующего взвешенную ошибку.
Методы голосования как частный случай AnyBoost
Алгоритм | Функция потерь | Размер шага |
---|---|---|
AdaBoost | Линейный поиск | |
ARC-X4 | ||
ConfidenceBoost | Линейный поиск | |
LogitBoost | Метод Ньютона |
Достоинства
Недостатки
См. также
Литература
- Mason L., Baxter J., Bartlett P., Frean M. Boosting algorithms as gradient descent. — Advances in Neural Information Processing Systems. — MIT Press, 2000. — T. 12. — 512--518 с.
- Mason L., Baxter J., Bartlett P., Frean M. Functional Gradient Techniques for Combining Hypotheses. — Advances in Large Margin Classifiers. — MIT Press, 1999. — T. 12. — 221--246 с.