Алгоритм AnyBoost
Материал из MachineLearning.
(→Описание алгоритма) |
(→Описание алгоритма) |
||
Строка 10: | Строка 10: | ||
# Инициализация <tex>F_0=0</tex>; | # Инициализация <tex>F_0=0</tex>; | ||
# Для всех <tex>t=0,..,T</tex> пока не выполнено условие выхода из цикла; | # Для всех <tex>t=0,..,T</tex> пока не выполнено условие выхода из цикла; | ||
- | ## Получение нового классификатора <tex>f_{t+1}</tex>, увеличивающего значение <tex>-\left \langle \nabla C(F_t), f_{t+1}\right \rangle</tex>; ## Если <tex>-\left \langle \nabla C(F_t),f_{t+1}\right \rangle \le 0</tex> выходим из цикла и возвращаем <tex>F_t</tex>; | + | ## Получение нового классификатора <tex>f_{t+1}</tex>, увеличивающего значение <tex>-\left \langle \nabla C(F_t), f_{t+1}\right \rangle</tex>; |
+ | ## Если <tex>-\left \langle \nabla C(F_t),f_{t+1}\right \rangle \le 0</tex> выходим из цикла и возвращаем <tex>F_t</tex>; | ||
## Выбор веса <tex>w_{t+1}</tex> | ## Выбор веса <tex>w_{t+1}</tex> | ||
## Уточнение классификатора <tex>F_{t+1}=F_{t}+w_{t+1}f_{t+1}</tex> | ## Уточнение классификатора <tex>F_{t+1}=F_{t}+w_{t+1}f_{t+1}</tex> |
Версия 17:53, 7 февраля 2010
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Алгоритм AnyBoost - класс алгоритмов, представляющих бустинг как процесс градиентного спуска. В основе алгоритма лежит последовательное уточнение функции, представляющей собой линейную комбинацию базовых классификаторов, с тем чтобы минимизировать функцию потерь. В класс AnyBoost входят практически все алгоритмы бустинг как частные случаи.
Содержание[убрать] |
Описание алгоритма
Алгоритм AnyBoost
Рассмотрим задачу классификации, - множество базовых классификаторов, все их линейные комбинации содержатся в множестве
.
На каждом шаге алгоритма к текущему классификатору
прибавляется базовый классификатор так, чтобы значение
уменьшилось на некоторое значение
. То есть в терминах функционального пространства для функции
ищется направление, в котором функция
быстрее уменьшается. Наибольшее уменьшение функции потерь наблюдается в случае, когда
максимизирует
.
- Инициализация
;
- Для всех
пока не выполнено условие выхода из цикла;
- Получение нового классификатора
, увеличивающего значение
;
- Если
выходим из цикла и возвращаем
;
- Выбор веса
- Уточнение классификатора
- Получение нового классификатора
- Возвращаем
В случае бинарного классификатора .
- обучающая выборка.
Функция потерь
определяется через дифференцируемую функцию выброса
.
В этом случае
, и нахождение классификатора на каждом шаге будет равносильно нахождению классификатора
, минимизирующего взвешенную ошибку.
См. также
Литература
- Mason L., Baxter J., Bartlett P., Frean M. Boosting algorithms as gradient descent. — Advances in Neural Information Processing Systems. — MIT Press, 2000. — T. 12. — 512--518 с.