Участник:Anton/Песочница
Материал из MachineLearning.
Строка 4: | Строка 4: | ||
== Описание метода == | == Описание метода == | ||
- | Пусть имеется <tex>k</tex> выборок <tex>x^{n_1}_1, . . . , x^{n_k}_k</tex> объемом <tex>n_i</tex> (<tex>i=1,...,k </tex>) каждая. | + | Пусть имеется <tex>k</tex> выборок <tex>x^{n_1}_1, . . . , x^{n_k}_k</tex> объемом <tex>n_i</tex> (<tex>i=1,...,k </tex>) каждая. Через <tex>\mu_i</tex> обозначим математические ожидания распределений, из которых получены выборки. |
- | + | Предположим, что | |
- | + | # Выборки <tex>x^{n_1}_1, . . . , x^{n_k}_k</tex> являются [[Нормальное распределение| нормально-распределенными]]. | |
+ | # Выборки <tex>x^{n_1}_1, . . . , x^{n_k}_k</tex> обладают одинаковыми дисперсиями. | ||
=== Нулевая гипотеза === | === Нулевая гипотеза === |
Версия 19:01, 4 января 2010
Метод LSD = Метод группирования выборок с наименее значимой разницей = Least Significant Difference method.
Метод LSD позволяет проверять равенство средних значений нескольких выборок. Метод изобретен Фишером в 1935 году [1] и является первым методом множественных сравнений. Также известен как безопасный t-тест (protected t-test method).
Содержание[убрать] |
Описание метода
Пусть имеется выборок объемом () каждая. Через обозначим математические ожидания распределений, из которых получены выборки.
Предположим, что
- Выборки являются нормально-распределенными.
- Выборки обладают одинаковыми дисперсиями.
Нулевая гипотеза
Метод LSD проверяет нулевую гипотезу о том, что средние значения всех выборок одинаковы.
Альтернативная гипотеза : существует, по крайней мере, две выборки и () с несовпадающими средними значениями.
- (для некоторых ).
Статистика метода LSD
Статистика метода LSD вычисляется в соответствии с соотношением:
- .
Здесь - внутригрупповая дисперсия:
Описание метода
Если по F-критерию нулевая гипотеза о равенстве
Упорядочить средние значения выборок по убыванию.
- Для каждой соседней пары начиная с первой выполнить проверки значимости разности средних. Для проверки рассчитывается значение LSD. Для случая одинаково количества наблюдений в каждой выборке используется формула: . Это значение используется для проверок всех пар. В ситуации когда объемы выборок различаются, используется формула:
Критическая область
Для статистики метода LSD критической областью при уровне значимости является область
где - квантиль распределения Стьюдента.
Для всех проверяем гипотезу . Если нулевая гипотеза выполнена, тогда объединяем с .
Пример использования
- цены на -ое лекарство в разных аптеках. Вопрос: какие лекарства взаимозаменяемы по цене? Делим лекарства на ценовые коридоры.
Ссылки
- ↑ S. E. Maxwell, H. D. Delaney Designing experiments and analyzing data: a model comparison perspective. 2003. P. 229.
Литература
- Закс Л. Статистическое оценивание. — М.: Статистика, 1976. — 600 с.
- Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистические методы в медико-биологических исследованиях с использованием Excel. — Киев: Морион, 2001. — 408 с.
- Scott E. Maxwell, Harold D. Delaney Designing experiments and analyzing data: a model comparison perspective. — 2003.
- Jason C. Hsu Multiple comparisons: theory and methods. — 1996.
См. также
- Метод множественных сравнений Шеффе
- Критерий Стьюдента
- Гипотеза сдвига
- Проверка статистических гипотез
- Статистический анализ данных (курс лекций, К.В.Воронцов)
Ссылки
- Fisher’s least significant difference (LSD)
- Википедия: Проверка статистических гипотез
- Википедия: Статистический критерий
- Электронный статистический словарь StatSoft
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |