Биномиальное распределение

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Асимптотические приближения при больших n)
Строка 20: Строка 20:
В этих случаях можно использовать приближения биномиального распределения распределением Пуассона и нормальным (приближение Муавра-Лапласа).
В этих случаях можно использовать приближения биномиального распределения распределением Пуассона и нормальным (приближение Муавра-Лапласа).
-
'''Приближение распределением Пуассона''' применяется в ситуациях, когда значения <tex>n</tex> большие, а значения <tex>p</tex> близки к нулю. При этом биномиальное распределение аппроксимируется распределением Пуассона с параметром <tex>\lambda=np</tex>.
+
===Приближение Пуассона===
 +
Приближение распределением Пуассона применяется в ситуациях, когда значения <tex>n</tex> большие, а значения <tex>p</tex> близки к нулю. При этом биномиальное распределение аппроксимируется распределением Пуассона с параметром <tex>\lambda=np</tex>.
Строгая формулировка: если <tex>n\to\infty</tex> и <tex>p\to 0</tex> таким образом, что <tex>np\to\lambda</tex>, то
Строгая формулировка: если <tex>n\to\infty</tex> и <tex>p\to 0</tex> таким образом, что <tex>np\to\lambda</tex>, то
Строка 33: Строка 34:
Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].
Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].
-
'''Приближение нормальным распределением''' используется в ситуациях, когда <tex>n\to\infty</tex>, а <tex>p</tex> фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении <tex>X</tex> в виде суммы <tex>n</tex> слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины
+
===Нормальное приближение===
 +
Приближение нормальным распределением (Муавра-Лапласа) используется в ситуациях, когда <tex>n\to\infty</tex>, а <tex>p</tex> фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении <tex>X</tex> в виде суммы <tex>n</tex> слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины
<tex>X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{npq}</tex>, где <tex>q=1-p</tex>
<tex>X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{npq}</tex>, где <tex>q=1-p</tex>
Строка 39: Строка 41:
близко к стандартному нормальному.
близко к стандартному нормальному.
-
'''Локальная теорема Муавра-Лапласа''' используется для приближенного вычисления вероятностей отдельных значений. Она утверждает [1, гл. I, §6], что равномерно по всем значениям <tex>k</tex>, таким что <tex>|k-np|=o(npq)^{2/3}</tex>, имеет место
+
===Локальная теорема Муавра-Лапласа===
 +
Данная теорема используется для приближенного вычисления вероятностей отдельных значений биномиального распределения. Она утверждает [1, гл. I, §6], что равномерно по всем значениям <tex>k</tex>, таким что <tex>|k-np|=o(npq)^{2/3}</tex>, имеет место
<tex>P(X=k)\sim\frac{1}{\sqrt{2\pi npq}}e^{-\frac{(k-np)^2}{2npq}}=\frac{1}{\sqrt{npq}}\varphi\left(\frac{k-np}{\sqrt{npq}}\right),</tex> где <tex>\varphi</tex> - плотность стандартного нормального распределения.
<tex>P(X=k)\sim\frac{1}{\sqrt{2\pi npq}}e^{-\frac{(k-np)^2}{2npq}}=\frac{1}{\sqrt{npq}}\varphi\left(\frac{k-np}{\sqrt{npq}}\right),</tex> где <tex>\varphi</tex> - плотность стандартного нормального распределения.
 +
 +
===Интегральная теорема Муавра-Лапласа===
==Литература==
==Литература==

Версия 10:04, 3 ноября 2009

Содержание

[убрать]

Определение

Биномиальное распределение - дискретное распределение вероятностей случайной величины X, принимающей целочисленные значения k=0,1,\ldots,n с вероятностями:

P(X=k)=C_n^kp^k(1-p)^{n-k}.

Данное распределение характеризуется двумя параметрами: целым числом n>0, называемым числом испытаний, и вещественным числом p, 0\le p\le 1, называемом вероятностью успеха в одном испытании. Биномиальное распределение - одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из n независимых испытаний, в каждом из которых может произойти "успех" с вероятностью p, то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы X=X_1+\cdots+X_n независимых слагаемых, имеющих распределение Бернулли.

Основные свойства

Характеристическая функция \phi(t)=(1+p(e^{it}-1))^n

Моменты:

  • Математическое ожидание: MX=np
  • Дисперсия: DX=np(1-p)
  • Асимметрия: \gamma_1=\frac{1-2p}{\sqrt{np(1-p)}}; при p=0.5 распределение симметрично относительно центра n/2

Асимптотические приближения при больших n

Если значения n велики, то непосредственное вычисление вероятностей событий, связанных с данной случайной величиной, технически затруднительно. В этих случаях можно использовать приближения биномиального распределения распределением Пуассона и нормальным (приближение Муавра-Лапласа).

Приближение Пуассона

Приближение распределением Пуассона применяется в ситуациях, когда значения n большие, а значения p близки к нулю. При этом биномиальное распределение аппроксимируется распределением Пуассона с параметром \lambda=np.

Строгая формулировка: если n\to\infty и p\to 0 таким образом, что np\to\lambda, то

P(X=k)\to\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,2,\ldots.

Более того, справедлива следующая оценка. Пусть Y - случайная величина, имеющая распределение Пуассона с параметром \lambda=np. Тогда для произвольного множества B\subset\{0,1,2,\ldots\} справедливо неравенство:

|P(X\in B) - P(Y\in B)|\le 2np^2.

Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].

Нормальное приближение

Приближение нормальным распределением (Муавра-Лапласа) используется в ситуациях, когда n\to\infty, а p фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении X в виде суммы n слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины

X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{npq}, где q=1-p

близко к стандартному нормальному.

Локальная теорема Муавра-Лапласа

Данная теорема используется для приближенного вычисления вероятностей отдельных значений биномиального распределения. Она утверждает [1, гл. I, §6], что равномерно по всем значениям k, таким что |k-np|=o(npq)^{2/3}, имеет место

P(X=k)\sim\frac{1}{\sqrt{2\pi npq}}e^{-\frac{(k-np)^2}{2npq}}=\frac{1}{\sqrt{npq}}\varphi\left(\frac{k-np}{\sqrt{npq}}\right), где \varphi - плотность стандартного нормального распределения.

Интегральная теорема Муавра-Лапласа

Литература

1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.


Ссылки

Личные инструменты