Участник:ADY
Материал из MachineLearning.
(Различия между версиями)
(→Машинное обучение) |
(→Машинное обучение) |
||
Строка 1: | Строка 1: | ||
- | == | + | == Сивер Андрей Степанович == |
+ | |||
+ | * Окончил Физфак МГУ в 2004 (кафедра теорфизики). | ||
+ | * Занимался оценкой значений фундаментальных физических констант в ГНЦ ИФВЭ (2003-2006). | ||
+ | * | ||
+ | |||
+ | === Текущие представления о машинном обучении === | ||
* Происходит и эволюционирует из тематики "искусственного интеллекта". | * Происходит и эволюционирует из тематики "искусственного интеллекта". | ||
** В широком смысле изучает любые математические и кибернетические модели, способные к обучению: понимаемое (1) в широком смысле, как адаптацию в текущих условиях, с целью максимально эффективного действия; (2) в узком смысле, моделирование среды, с целью выяснения ее свойств и характеристик. | ** В широком смысле изучает любые математические и кибернетические модели, способные к обучению: понимаемое (1) в широком смысле, как адаптацию в текущих условиях, с целью максимально эффективного действия; (2) в узком смысле, моделирование среды, с целью выяснения ее свойств и характеристик. | ||
** В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле). | ** В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле). | ||
- | * Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как | + | * Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как распространение статистических идей для статистических задач в общей постановке: то есть, когда имеются и используются только данные и достаточно общие условия и знания о задаче, и требуется определить все статистические или любые иные объективные характеристики системы. |
* Особенность подхода машинного обучения состоит в том, что изучаться может сам процесс обучения, причем результаты предыдущих процессов обучения могут использоваться в следующей процедуре обучения. В обычной матстатистике такие модели, как правило, не изучаются (обычно, рассматриваются только весь набор имеющихся данных и такой подход математически выглядит проще, чем анализ рекурентных соотношений; в то время как для компьютерного моделирования второй подход гораздо проще первого). | * Особенность подхода машинного обучения состоит в том, что изучаться может сам процесс обучения, причем результаты предыдущих процессов обучения могут использоваться в следующей процедуре обучения. В обычной матстатистике такие модели, как правило, не изучаются (обычно, рассматриваются только весь набор имеющихся данных и такой подход математически выглядит проще, чем анализ рекурентных соотношений; в то время как для компьютерного моделирования второй подход гораздо проще первого). | ||
* Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно. Количество памяти для такого обучения должно быть также ограничено. | * Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно. Количество памяти для такого обучения должно быть также ограничено. | ||
* Не стоит недооценивать понимание машинного обучения в широком смысле (см. выше). Мозг человека можно понимать как некоторую физическую машину для некоторого алгоритма машинного обучения. Видя успехи этой системы ;), можно надеется на будущие успехи и теории машинного обучения :). | * Не стоит недооценивать понимание машинного обучения в широком смысле (см. выше). Мозг человека можно понимать как некоторую физическую машину для некоторого алгоритма машинного обучения. Видя успехи этой системы ;), можно надеется на будущие успехи и теории машинного обучения :). |
Версия 10:26, 15 апреля 2008
Сивер Андрей Степанович
- Окончил Физфак МГУ в 2004 (кафедра теорфизики).
- Занимался оценкой значений фундаментальных физических констант в ГНЦ ИФВЭ (2003-2006).
Текущие представления о машинном обучении
- Происходит и эволюционирует из тематики "искусственного интеллекта".
- В широком смысле изучает любые математические и кибернетические модели, способные к обучению: понимаемое (1) в широком смысле, как адаптацию в текущих условиях, с целью максимально эффективного действия; (2) в узком смысле, моделирование среды, с целью выяснения ее свойств и характеристик.
- В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле).
- Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как распространение статистических идей для статистических задач в общей постановке: то есть, когда имеются и используются только данные и достаточно общие условия и знания о задаче, и требуется определить все статистические или любые иные объективные характеристики системы.
- Особенность подхода машинного обучения состоит в том, что изучаться может сам процесс обучения, причем результаты предыдущих процессов обучения могут использоваться в следующей процедуре обучения. В обычной матстатистике такие модели, как правило, не изучаются (обычно, рассматриваются только весь набор имеющихся данных и такой подход математически выглядит проще, чем анализ рекурентных соотношений; в то время как для компьютерного моделирования второй подход гораздо проще первого).
- Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно. Количество памяти для такого обучения должно быть также ограничено.
- Не стоит недооценивать понимание машинного обучения в широком смысле (см. выше). Мозг человека можно понимать как некоторую физическую машину для некоторого алгоритма машинного обучения. Видя успехи этой системы ;), можно надеется на будущие успехи и теории машинного обучения :).