Участник:ADY
Материал из MachineLearning.
(Различия между версиями)
(→Машинное обучение) |
(→Машинное обучение) |
||
Строка 4: | Строка 4: | ||
** В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле). | ** В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле). | ||
* Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как пролонгацию статистических идей для статистических задач в общей постановке: то есть, когда имеются и используются только данные и достаточно общие условия и знания о задаче, и требуется определить все статистические (или любые иные объективные) характеристики системы. | * Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как пролонгацию статистических идей для статистических задач в общей постановке: то есть, когда имеются и используются только данные и достаточно общие условия и знания о задаче, и требуется определить все статистические (или любые иные объективные) характеристики системы. | ||
+ | * Особенность подхода машинного обучения состоит в том, что изучаться может сам процесс обучения, причем результаты предыдущих процессов обучения могут использоваться в следующей процедуре обучения. В обычной матстатистике такие модели, как правило, не изучаются (обычно, рассматриваются только весь набор имеющихся данных и такой подход математически выглядит проще, чем анализ рекурентных соотношений; в то время как для компьютерного моделирования второй подход гораздо проще первого). | ||
* Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно. | * Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно. |
Версия 10:13, 5 декабря 2007
Машинное обучение
- Происходит и эволюционирует из тематики "искусственного интеллекта".
- В широком смысле изучает любые математические и кибернетические модели, способные к обучению: понимаемое (1) в широком смысле, как адаптацию в текущих условиях, с целью максимально эффективного действия; (2) в узком смысле, моделирование среды, с целью выяснения ее свойств и характеристик.
- В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле).
- Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как пролонгацию статистических идей для статистических задач в общей постановке: то есть, когда имеются и используются только данные и достаточно общие условия и знания о задаче, и требуется определить все статистические (или любые иные объективные) характеристики системы.
- Особенность подхода машинного обучения состоит в том, что изучаться может сам процесс обучения, причем результаты предыдущих процессов обучения могут использоваться в следующей процедуре обучения. В обычной матстатистике такие модели, как правило, не изучаются (обычно, рассматриваются только весь набор имеющихся данных и такой подход математически выглядит проще, чем анализ рекурентных соотношений; в то время как для компьютерного моделирования второй подход гораздо проще первого).
- Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно.