Структурные методы анализа изображений и сигналов (курс лекций, А.С. Конушин, Д.П. Ветров, Д.А. Кропотов, О.В. Баринова, В.С. Конушин, 2009)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Добавлена лекция 3)
(Добавлена информация про практические задания по курсу)
Строка 108: Строка 108:
|-
|-
|}
|}
 +
 +
== Практические задания по курсу ==
 +
Для успешной сдачи спецкурса необходимо выполнить все практические задания, а также сдать экзамен. Выполненные практические задания следует загружать [http://courses.graphicon.ru/main/smisa2009 сюда]. Там же будут доступны результаты проверки заданий.
== Литература ==
== Литература ==
Строка 116: Строка 119:
== См. также ==
== См. также ==
 +
[http://courses.graphicon.ru/main/smisa2009 Страница курса на сайте лаборатории компьютерной графики и мультимедиа ВМиК МГУ]
 +
[[Байесовские методы машинного обучения (курс лекций, Д.П. Ветров, Д.А. Кропотов, 2009)|Курс «Байесовские методы машинного обучения»]]
[[Байесовские методы машинного обучения (курс лекций, Д.П. Ветров, Д.А. Кропотов, 2009)|Курс «Байесовские методы машинного обучения»]]

Версия 11:51, 2 октября 2009

Студентам на заметку: на вкладке «Обсуждение» к данной странице можно задать вопрос по курсу, высказать свои пожелания, предложения и т.п.

Кропотов Д.А., 20 сентября 2009


Содержание

Курс посвящен математическим методам обработки информации, основанных на выделении структуры в исходных данных и ее последующем анализе. Эти методы широко используются при решении задач из разных прикладных областей, включая обработку изображений и видео, анализ поведения, распознавание речи, машинное обучение.

Программа курса

Часть 1. Графические модели для анализа изображений.

Введение в курс и понятие графических моделей.

Обзор курса. Задачи анализа структурированных данных. Представление зависимостей между объектами в виде графов. Основные задачи, для решения которых используются графические модели. Демонстрация современных работ, опирающихся на данные в курсе методы.

Напоминание основных понятий, которые будут активно использоваться в следующих лекциях. Основные операции с вероятностями (правило суммы, произведения, формула Байеса). Понятия мат. ожидание и матрицы ковариаций. Нормальное распределение. Независимость событий. Маргинализация (исключение переменной). Метод максимального правдоподобия, МАР-оценивание на примере нормального распределения. Матричная нотация (скалярное произведение, следы матриц, квадратичные формы, дифференцирование по вектору). Правило множителей Лагранжа с ограничениями в виде равенств и неравенств.

Презентация (PDF, 535 КБ)

Основные графические модели

Байесовские сети. Элементарные способы работы с байесовскими сетями. Марковские сети. Потенциалы на кликах. Примеры использования марковских сетей для анализа изображений. Ликбез: независимость случайных событий. Условная вероятность. Условная независимость.

Презентация (PDF, 548 КБ)

Марковские сети и дискретная оптимизация

Энергетическая формулировка задач компьютерного зрения. Разрезы графов, алгоритмы нахождения максимального потока. Интерактивная сегментация изображений. Энергия, которую можно минимизировать с помощью разрезов графов. Многоуровневые разрезы графов. Приближенная минимизация энергии с помощью разрезов графов. Алгоритм, основанный на замене. Примеры минимизируемых энергий. Сегментация видео. Сшивка изображений. Трехмерная реконструкция.

Презентация (PDF, 2.44 МБ)

Методы настройки марковских случайных полей

Методы обучения в марковских случайных полях. Применение для семантической сегментации изображений, распознавания объектов с учетом контекста и трехмерной реконструкции.

Алгоритмы обмена сообщениями. Belief propagation и Loopy belief propagation.

Обзор приближенных методов вывода в графических моделях

Несубмодулярные функционалы. Квадратичное псевдобулево программирование как расширение разрезов графов. Алгоритм TRW как альтернатива Loopy Belief Propagation. Минимизация дивергенции Кульбака-Лейблера: вариационный вывод и Expectation propagation на примере сегментации изображения и пауссоновского трекинга.

Часть 2. Графические модели для анализа и распознавания сигналов.

Скрытые марковские модели. Алгоритм сегментации сигнала

Примеры задач сегментации сигналов. Обучение НММ с учителем. оиск наиболее вероятной последовательности состояний. ЕМ-алгоритм и его использование в анализе графических моделей.

Обучение СММ без учителя

Алгоритм Баума-Уэлша для подсчета условного распределения скрытой переменной в отдельной точке. ЕМ-алгоритм для обучения НММ без учителя. Особенности численной реализации на ЭВМ. Модификации НММ (НММ высших порядков, факториальные НММ, многопоточные НММ, НММ ввода-вывода). Примеры использования НММ.

Методы фильтрации данных

Линейные динамические системы, фильтр Калмана. Настройка параметров фильтра Калмана. Уравнения Рауса-Тунга-Штрибеля. Пример использования.

Методы Монте Карло с марковскими цепями

Взятие интегралов методами Монте-Карло, голосование по апостериорному распределению вместо точечного решающего правила. Схема Гиббса. Гибридные методы Монте-Карло. Использование методов Монте Карло на примере фильтра частиц.

Использование методов обработки сигналов в задаче множественного трекинга

Задача множественного трекинга лабораторных животных. Определение числа особей в блобе. Алгоритм разделения особей. Идентификация животных и определение ключевых точек.

Часть 3. Методы понижения размерности.

Методы понижения размерности

Метод главных компонент. Вероятностный РСА. Ядровая версия РСА. Анализ независимых компонент. Нелинейное уменьшение размерности. Методы на базе MDL – минимальной длины описания. Активные контура и их применение для сегментации движущихся объектов в видеопотоке. Алгоритмы распознавания лиц на базе методов понижения размерности.

Ликбез: свойства симметричных матриц, положительно определенные матрицы.

Модель активных контуров

Модель активных контуров и примеры ее применения в задачах компьютерного зрения.

Расписание занятий

В 2009 году курс читается по четвергам на факультете ВМиК МГУ, в ауд. 671, начало в 18-05.

ДатаЗанятие
10 сентября 2009Лекция 1 «Введение в курс. Напоминание известных математических фактов для посл. лекций»
17 сентября 2009Лекция 2 «Графические модели. Общее представление»
24 сентября 2009Лекция 3 «Минимизация энергии с помощью разрезов графов»
1 октября 2009Лекция 4
8 октября 2009Лекция 5
15 октября 2009Лекция 6
22 октября 2009Лекция 7
29 октября 2009Лекция 8
5 ноября 2009Лекция 9
12 ноября 2009Лекция 10
19 ноября 2009Лекция 11
26 ноября 2009Лекция 12
3 декабря 2009Экзамен

Практические задания по курсу

Для успешной сдачи спецкурса необходимо выполнить все практические задания, а также сдать экзамен. Выполненные практические задания следует загружать сюда. Там же будут доступны результаты проверки заданий.

Литература

  1. Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006.
  2. Mackay D.J.C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
  3. Jordan M.I. (Ed.) Learning in graphical models. Cambridge MA: MIT Press, 1999
  4. Cowell R.G., Dawid A.P., Lauritzen S.L., Spiegelhalter D.J. Probabilistic networks and expert systems. Berlin: Springer, 1999.

См. также

Страница курса на сайте лаборатории компьютерной графики и мультимедиа ВМиК МГУ

Курс «Байесовские методы машинного обучения»

Спецсеминар «Байесовские методы машинного обучения»

Математические методы прогнозирования (кафедра ВМиК МГУ)

Личные инструменты