Участник:Tatarchuk

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Description)
(Overview)
Строка 28: Строка 28:
* return a posteriori probability estimates;
* return a posteriori probability estimates;
 +
There are four algorithms in SelSVM library:
 +
 +
* Selective Relevance Feature Machine (SelRFM) -
 +
* Selective Relevance Feature Machine (SelRKM) -
 +
* Selective Support Feature Machine (SelSFM) -
 +
* Selective Support Kernel Machine (SelSKM) -
=== How to use ===
=== How to use ===

Версия 12:49, 14 октября 2008

Татарчук Александр Игоревич

Содержание

Selective Support Vector Machines

Description

Authors V. Mottl A. Tatarchuk A. Eliseev

Developed at Computing Center of Russian Academy of Sceince, Moscow, Russia

Version 1.0

Date 14.10.2008

Overview

SelSVMs are modifications of classical Support Vector Machine provided with controlled selectivity property of feature/kernel selection.

The main features of the algorithms are the following:

  • work on small training sets with large number of features/kernels;
  • provide feature selection with controlled selectivity level;
  • use Matlab optimization solver and Mosek solver;
  • support precompiled kernels;
  • return a posteriori probability estimates;

There are four algorithms in SelSVM library:

  • Selective Relevance Feature Machine (SelRFM) -
  • Selective Relevance Feature Machine (SelRKM) -
  • Selective Support Feature Machine (SelSFM) -
  • Selective Support Kernel Machine (SelSKM) -

How to use

Matlab code

Publications

Личные инструменты