Сравнение временных рядов при авторегрессионном прогнозе (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Пример на реальных дынных)
Строка 142: Строка 142:
== Исходный код ==
== Исходный код ==
-
== Смотри также ==
+
 
== Литература ==
== Литература ==
# {{книга
# {{книга

Версия 10:58, 22 декабря 2010

Содержание

[убрать]

Аннотация

Данная работа посвящена исследованию зависимости между характеристиками временного ряда и распределением параметров регрессионных моделей, которые описывают эти временные ряды. Один из подходов исследовать данную зависимость, посмотреть, как распределены параметры моделей для похожих в некотором смысле временных рядов, и насколько эти распределения различаются для непохожих (различных в некотором смысле) временных рядов.

Постановка задачи

Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной $\mathbf{x}=\{x_{t}\}_{t=1}^T\in\mathbb{R}^T$. Элемент последовательности называется отсчетом временного ряда.

Задача авторегрессионного прогноза заключается в нахождении модели $f(\mathbf{x}, \mathbf{w})$, где $\mathbf{w}\in\mathbb{R}^M$ вектор параметров модели, которая наилучшим образом приближает следущее значение временного ряда $x_{T+1}:\widehat{x}_{T+1}=f(\mathbf{x}, \mathbf{w})$. Свертка временного ряда возникает в случае существования на множестве подпоследовательностей временного ряда некоторого инварианта. Примером инварианта является период временного ряда, который физически может означать сезонность в данных. При этом построенная модель должна учитывать наличие инварианта и сохранять данное свойство для ряда прогнозов: $\{\widehat{x}_{t}\}_{t=1}^T\in\mathbb{R}^T$.

Пусть задан временной ряд $\mathbf{x}=\{x_{t}\}_{t=1}^T\in\mathbb{R}^T$. Предполагается, что отсчеты t=1,\dots, T были сделаны через равные промежутки времени, и период временного ряда равен $p$, при этом $ {T}+1=p\cdot{n}$, где n\in\mathbb{N}. Задана модель $\mathbf{x}=f(\mathbf{x}, w)+\epsilon$,где случайная величина \mathbf{\varepsilon} имеет нормальное распределение \mathbf{\varepsilon} \in N(0, \sigma^2). Вектор параметров модели \mathbf{w} рассматривается как многомерная случайная величина. Пусть плотность распределения параметров имеет вид многомерного нормального распределения N(\mathbf{0}, A) с матрицей ковариации A. Модель некоторым образом учитывает период временного ряда. Предполагается, модель временного ряда может меняться с течением времени, т.е. для разных подпоследовательностей длины p оптимальные параметры модели $\mathbf{x}=f(\mathbf{x}, w)+\epsilon$ будут отличаться.

Расстояние между временными рядами

Расстояние между различными подпоследовательностями  x_{n_1\cdot{p}+1},\dots,x_{(n_1+1)\cdot{p}} и  x_{n_2\cdot{p}+1},\dots,x_{(n_2+1)\cdot{p}} можно вычислить как сумму квадратов отклонений:

SSE=\sum_{i=1}^p{(x_{n_2{p}+i}-x_{n_1{p}+i})^2}
.

Однако этот метод учитывает только расстояния между парами отсчетов временного ряда. Метод поиска пути минимальной стоимости (warping path) учитывает не только расстояние между отсчетами рядов, но и форму самих временных рядов.

Предположим, мы имеем две последовательности \mathbf{x}= \{x_{1},\dots,x_{n}\}\in\mathbb{R}^n и \mathbf{y}= \{y_{1},\dots,y_{m}\}\in\mathbb{R}^m. Тогда построим матрицу n\times m попарных расстояний:

\Omega=\|\omega_{i,j}\|_{i=1,j=1}^{n, m}=\|(x_i-x_j)^2\|_{i=1,j=1}^{n, m}
.

Далее из элементов матрицы \Omega строим путь:

\{s_1, \dots, s_C\}=\{\omega_{i_1,j_1}, \dots, \omega_{i_{n_C}, j_{m_C}}\}
.

Построенный путь удовлетворяет следующим условиям:

'1 граничные условия:'
s_1 = \omega_{1,1},~ s_C = \omega_{n,m};
'2) непрерывность:'
если~ s_k = \omega_{i,j},~ s_{k-1} = \omega_{i',j'}, тогда i-i'\leq 1,~ j-j'\leq 1;
'3) монотонность:'
если~ s_k = \omega_{i,j},~ s_{k-1} = \omega_{i',j'}, тогда i-i'\geq 0,~j-j'\geq 0.

Стоимостью пути \{s_1, \dots, s_C\} будет

<tex>D\left(\{s_1, \dots, s_C\}\right)=\frac{\sqrt{\sum_{c=1}^C{s_c}}}{C}.

Среди всех путей есть по крайней мере один с минимальной стоимостью. Его стоимость и будем считать расстоянием между последовательностями:

DTW(\mathbf{x},\mathbf{y}) = \min\limits_{\{s_1, \dots, s_C\}}D\left(\{s_1, \dots, s_C\}\right)
.

Расстояние между параметрами модели

Расстояние между параметрами модели $\mathbf{x}=f(\mathbf{x}, \mathbb{w})+\epsilon$, настроенной на разных подпоследовательностях, можно измерить как расстояние Кульбака-Лейблера между функциями распределения 2-ух случайных величин {p(x)},{q(x)}:

D_{KL}(p, q) = \sum\limits_{x\in \mathcal{X}} p(x) \ln \frac{p(x)}{q(x)}.

Постановка задачи

Требуется исследовать зависимость расстояния между параметрами модели $\mathbf{x}=f(\mathbf{x}, w)+\epsilon$ от расстояния между подпоследовательностями, на которых эти параметры были настроены.

Алгоритм

Для настройки параметров модели f(\mathbf{x}, \mathbf{w})+\epsilon используется связный байесовский вывод

\ln p(D|\beta, A)=-\frac{1}{2}\ln|A|-\frac{N}{2}\ln2\pi+\frac{N}{2}\ln\beta-S(\mathbf{w_0})-\frac{1}{2}\ln|H|,

где S(\mathbf{w})=\frac{1}{2}\mathbf{w}^TA\mathbf{w}+\beta E_D — функция ошибки,

H=-\nabla\nabla S(\mathbf{w})|_{\mathbf{w}=\mathbf{w_0}} — матрица Гессе функции ошибок,

E_D=\frac{1}{2}\sum^n_{i=1}(\widehat{x_i}-x_i)^2 — функция ошибки в пространстве данных.

Настройка параметрической регрессионной модели происходит в 2 этапа, сначала настраиваются параметры \mathbf{w} при фиксированных гиперпараметрах \beta, A, затем при вычисленных значениях параметров функция правдоподобия \ln p(D|\beta, A) оптимизируется по гиперпараметрам. Процедура повторяется, пока настраиваемые параметры не стабилизируется.

Для простоты вычислений, считаем, что A имеет диагональный вид:

A=\left(
\begin{array}{cccc}
\alpha_{1} & 0 & \dots & 0\\
0 & \alpha_2 & \dots & 0 \\
\vdots & \vdots & \ddots & 0\\
0 & \dots & 0 & \alpha_M\\
\end{array}
\right).
.

Вычислительный эксперимент

Пример на реальных дынных

Вычислительный эксперимент проводился на реальных данных. Использовались временные ряды потребления электроэнергии в некотором регионе с отсчетами 1 час, период ряда равен p=24. Эксперимент состоит из этапов:

1) из множества порождающих моделей:

f_1(x) = x;
f_2(x) = \sin(x);
f_3(x) = \cos(x);
f_4(x) = \exp(x);
f_5(x) = \ln(x);
f_6(x) = \tan(x);

была построена их суперпозиция, описывающая потребление электроэнергии за сутки:

$$\widehat{x}_{pn+t}=w_1\cdot{\sqrt{t}}+w_2\cdot{\exp(-t)}+w_3\cdot{\exp(-24*t)}+w_4\cdot \exp\left(w_5\cdot{\sin(t^4)} \right)+w_6\cdot \exp \left( w_7\cdot cos(24*t^{2,5})\right)+$$
$$+w_8\cdot \exp\left(w_9\cdot sin(t^{-0,5}) \right)+w_{10}\cdot cos(t)+w_{11}\cdot cos(\frac{2}{15}\cdot t+\frac{1}{3}))+w_{12}\cdot t\cdot cos(t^3).$$


2) модель настраивается на подпоследовательности

\mathbf{x}(n)=\{x_{pn+1},\dots,x_{pn+24}\},

где n - номер суток. В результате получаем набор оптимальных параметров и гиперпараметров модели, оптимальных для данной подпоследовательности:

\mathbf{w}(n), A(n), \beta(n)
.

3) строится зависимость расстояния между последовательностями в пространстве параметров:

 D_{KL} \left( \mathbf{x}(n), \mathbf{x}(m) \right)= D_{KL}\left(p(w), q(w) \right) = \sum\limits_{w\in \mathcal{W}} p(w) \ln \frac{p(w)}{q(w)} ,
где p(w),q(w) - плотности распределений случайных величины из N(\mathbf{w}(n),A(n)) и N(\mathbf{w}(m),A(m)) соотвественно, и расстояний в пространстве значений:
Dintance \left( \mathbf{x}(n), \mathbf{x}(m) \right)=\sum_{t=1}^{24}\left( x_t(n)-x_t(m) \right)^2

Результаты экспериментов на реальных данных показывают, что можно выделить среди множества пар временных рядов похожие и непохожие. Используя расстояние Кульбака-Лейблера между распределениями параметров моделей можно установить порог, который поможет определить похожие на заранее выделенный тип временных рядов. Для пояснения вышесказанного приведем пример на модельных данных, в которых участвуют временные ряды двух типов.

Пример на сгенерированных данных

Проведен для для 6 моделей распределения данных: 1) f(\mathbf{x},\mathbf{w}) = a_1 + b_1\cdot{t}+\epsilon, где \epsilon\in N(0, 1);

2) f(\mathbf{x},\mathbf{w}) = a_1 + b_1\cdot{t}+\epsilon, где \epsilon\in N(0, 5);

3) f(\mathbf{x},\mathbf{w}) = a_1-10*\sigma_{\epsilon} + b_1\cdot{t}+\epsilon, где \epsilon\in N(0, 1), \sigma_{\epsilon} - дисперсия случайной величины;

4) f(\mathbf{x},\mathbf{w}) = a_1 + 1,5\cdot b_1\cdot{t}-t^2+\epsilon, где \epsilon\in N(0, 5);

5) f(\mathbf{x},\mathbf{w}) = a_1 + 1,5\cdot b_1\cdot{t}-t^2+\epsilon, где \epsilon\in N(0, 10);

6) f(\mathbf{x},\mathbf{w}) = a_1 -10*\sigma_{\epsilon} + 1,5\cdot b_1\cdot{t}-t^2+\epsilon, где \epsilon\in N(0, 5).

Первые три модели относится в первому типу (line), три последних модели относятся ко второму типу (parabola). Прогнозирующая модель была линейной: \widehat{x}_{t}=w_1+w_2\cdot{t}.

На тестовом примере видно, что чем больше расстояние между рядами в пространстве значений, тем скорее больше будет разница между распределениями настроенных параметров. На картинках можно явно разделить увидеть, что расстояние Кульбака-Лейблера между распределениями настроенных параметров для похожих моделей (line - line или parabola - parabola) значительно меньше расстояния между параметрами непохожих моделей (line-parabola или parabola-line). Таким образом можно настроить такой порог, по которому можно было бы определить, относится ли временной ряд к заранее фиксированному типу моделей.

Исходный код

Литература

  1. Стрижов В.В, Пташко Г.О. Построение инвариантов на множестве временных рядов путем динамической свертки свободной переменной. — ВЦ РАН, 2009.
  2. Стрижов В.В Методы выбора регрессионных моделей. — ВЦ РАН, 2010.
  3. Keogh E. J., Pazzani M. J. Derivative Dynamic Time Warping. — International Conference on Data Mining (SDM’2001), 2001.
Личные инструменты