Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Тематические модели совстречаемости слов)
 
(123 промежуточные версии не показаны)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
В спецкурсе изучается вероятностное [[тематическое моделирование]] (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
В спецкурсе изучается вероятностное [[тематическое моделирование]] (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
Строка 7: Строка 7:
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
-
'''Материалы для первого ознакомления:'''
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
+
-
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
+
-
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
+
-
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
+
'''Основной материал:'''
'''Основной материал:'''
-
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: обзор моделей и аддитивная регуляризация]]. {{важно|— обновление 05.02.2019}}.
+
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 10.12.2024}}.
-
 
+
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозаписи, 2023 осень (МФТИ)].
-
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
+
= Программа курса =
= Программа курса =
-
Условием сдачи спецкурса является выполнение индивидуальных практических заданий.
+
== Задача тематического моделирования ==
-
 
+
Презентация: [[Media:Voron24ptm-intro.pdf|(PDF, 1,4 МБ)]] {{важно|— обновление 19.09.2024}}.
-
== Введение ==
+
[https://youtu.be/DU0AQUNW3YI?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt Видеозапись]
-
Презентация: [[Media:Voron19ptm-intro.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 14.02.2019}}.
+
'''Цели и задачи тематического моделирования.'''
'''Цели и задачи тематического моделирования.'''
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
-
* Вероятностные модели порождения текста.
+
* Вероятностная модель порождения текста.
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
 +
'''Аддитивная регуляризация тематических моделей.'''
'''Аддитивная регуляризация тематических моделей.'''
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
-
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM. [[Условия Каруша–Куна–Таккера]].
+
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
 +
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
* Мультимодальные тематические модели.
+
 
-
'''Библиотека [[BigARTM]].'''
+
'''Практика тематического моделирования.'''
-
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
+
-
* Оффлайновый регуляризованный EM-алгоритм.
+
-
* Онлайновый регуляризованный EM-алгоритм. Распараллеливание.
+
* Проект с открытым кодом BigARTM.
* Проект с открытым кодом BigARTM.
 +
* Этапы решения практических задач.
 +
* Методы предварительной обработки текста.
 +
* Датасеты и практические задания по курсу.
-
== Аддитивная регуляризация тематических моделей ==
+
== Онлайновый ЕМ-алгоритм и аддитивная регуляризация ==
-
Презентация: [[Media:Voron19ptm-artm.pdf|(PDF, 1,6 МБ)]] {{важно|— обновление 14.02.2019}}.
+
Презентация: [[Media:Voron24ptm-regular.pdf|(PDF, 1,3 МБ)]] {{важно|— обновление 03.10.2024}}.
 +
[https://youtu.be/mUMfoBlslQE?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt Видеозапись]
'''Часто используемые регуляризаторы.'''
'''Часто используемые регуляризаторы.'''
-
* Регуляризаторы сглаживания и разреживания.
+
* Сглаживание и разреживание.
-
* Регуляризатор декоррелирования.
+
* Частичное обучение.
-
* Регуляризатор отбора тем.
+
* Декоррелирование тем.
-
'''Внутренние метрики качества модели.'''
+
* Разреживание для отбора тем.
-
* Правдоподобие и перплексия.
+
 
-
* Интерпретируемость и когерентность.
+
'''Онлайновый ЕМ-алгоритм.'''
 +
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
 +
* Оффлайновый регуляризованный EM-алгоритм.
 +
* Улучшение сходимости несмещёнными оценками.
 +
* Подбор коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
 +
 
 +
'''Эксперименты с регуляризацией.'''
 +
* Производительность BigARTM
 +
* Оценивание качества: перплексия, когерентность, лексическое ядро
 +
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
 +
 
 +
== Тематический информационный поиск ==
 +
Презентация: [[Media:Voron24ptm-exp.pdf|(PDF, 4,8 МБ)]] {{важно|— обновление 10.10.2024}}.
 +
[https://youtu.be/2SkbbDYcBUQ?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt Видеозапись]
 +
 
 +
'''Мультимодальные тематические модели.'''
 +
* Примеры модальностей.
 +
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
 +
 
 +
'''Иерархические тематические модели.'''
 +
* Иерархии тем. Послойное построение иерархии.
 +
* Регуляризаторы для разделения тем на подтемы.
 +
* Псевдодокументы родительских тем.
 +
* Модальность родительских тем.
 +
 
 +
'''Эксперименты с тематическим поиском.'''
 +
* Методика измерения качества поиска.
 +
* Тематическая модель для документного поиска.
 +
* Оптимизация гиперпараметров.
 +
 
 +
'''Проект «Мастерская знаний»'''
 +
* Поисково-рекомендательная система SciSearch.ru
 +
* Векторный поиск для формирования тематических подборок
 +
* Требования к тематическим моделям для научного информационного поиска
 +
 
 +
== Оценивание качества тематических моделей ==
 +
Презентация: [[Media:Voron24ptm-quality.pdf|(PDF, 1,6 МБ)]] {{важно|— обновление 17.10.2024}}.
 +
[https://youtu.be/OoIetK1pTUA?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt Видеозапись]
 +
 
 +
'''Измерение качества тематических моделей.'''
 +
* Правдоподобие и перплексия.
 +
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
* Разреженность и различность.
* Разреженность и различность.
-
'''Эксперименты с регуляризаторами.'''
 
-
* Сглаживание, разреживание, декоррелирование.
 
-
* Существует ли оптимальное число тем?
 
-
* Семантическая однородность тем.
 
-
== Обзор базовых инструментов ==
+
'''Проверка гипотезы условной независимости.'''
-
''Александр Романенко'', ''Мурат Апишев''.
+
* Статистики на основе KL-дивергенции и их обобщения.
 +
* Регуляризатор семантической однородности.
 +
* Применение статистических тестов условной независимости.
 +
 
 +
'''Проблема определения числа тем.'''
 +
* Разреживающий регуляризатор для отбора тем.
 +
* Эксперименты на синтетических и реальных данных.
 +
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
 +
 
 +
'''Проблема тематической несбалансированности в данных'''
 +
* Проблема малых тем и тем-дубликатов
 +
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
 +
* Эксперименты с регуляризаторами отбора тем и декоррелирования
 +
* Регуляризатор семантической однородности
 +
 
 +
== BigARTM и базовые инструменты ==
 +
''Мурат Апишев''.
Презентация: [[Media:Base_instruments.zip‎|(zip, 0,6 МБ)]] {{важно|— обновление 17.02.2017}}.
Презентация: [[Media:Base_instruments.zip‎|(zip, 0,6 МБ)]] {{важно|— обновление 17.02.2017}}.
 +
[https://youtu.be/AIN00vWOJGw Видеозапись]
'''Предварительная обработка текстов'''
'''Предварительная обработка текстов'''
-
* Парсинг "сырых" данных.
+
* Парсинг «сырых» данных.
* Токенизация, стемминг и лемматизация.
* Токенизация, стемминг и лемматизация.
* Выделение энграмм.
* Выделение энграмм.
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
 +
'''Библиотека BigARTM'''
'''Библиотека BigARTM'''
* Методологические рекоммендации по проведению экспериментов.
* Методологические рекоммендации по проведению экспериментов.
Строка 78: Строка 134:
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
== Тематические иерархии и разведочный информационный поиск ==
+
== Теория ЕМ-алгоритма ==
-
Презентация: [[Media:Voron19ptm-exp.pdf|(PDF, 4,5 МБ)]] {{важно|— обновление 21.03.2019}}.
+
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF, 2,0 МБ)]] {{важно|— обновление 25.10.2024}}.
-
 
+
[https://youtu.be/DBF5QAFC1V0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt Видеозапись]
-
'''Разведочный информационный поиск'''
+
-
* Концепция разведочного поиска.
+
-
* Концепция distant reading и идеи визуализации.
+
-
* Сценарии использования разведочного поиска.
+
-
'''Иерархические тематические модели.'''
+
-
* Визуализация тематических иерархий.
+
-
* Метод нисходящего послойного построения иерархии.
+
-
* Спектр тем.
+
-
'''Эксперименты с тематическим поиском.'''
+
-
* Методика измерения качества поиска.
+
-
* Тематическая модель для документного поиска.
+
-
* Оптимизация гиперпараметров.
+
-
 
+
-
== Модель LDA и ЕМ-алгоритм ==
+
-
Презентация: [[Media:Voron19ptm-emlda.pdf|(PDF, 1,5 МБ)]] {{важно|— обновление 21.03.2019}}.
+
'''Классические модели PLSA, LDA.'''
'''Классические модели PLSA, LDA.'''
* Модель PLSA.
* Модель PLSA.
-
* Модель LDA. Максимизация апостериорной вероятности для модели LDA.
+
* Модель LDA. Распределение Дирихле и его свойства.
-
* Начала байесовского подхода. Распределение Дирихле и его свойства. Сопряжённость с мультиномиальным распределением.
+
* Максимизация апостериорной вероятности для модели LDA.
 +
 
'''Общий EM-алгоритм.'''
'''Общий EM-алгоритм.'''
-
* EM-алгоритм для максимизации неполного правдоподобия. Сходимость в слабом смысле.
+
* EM-алгоритм для максимизации неполного правдоподобия.
-
* Регуляризованный EM-алгоритм.
+
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
* Альтернативный вывод формул ARTM.
* Альтернативный вывод формул ARTM.
-
'''Эксперименты с PLSA и LDA.'''
 
-
* Неустойчивость на синтетических данных.
 
-
* Неустойчивость на реальных данных.
 
-
* Переобучение и робастность.
 
-
== Байесовское обучение тематических моделей ==
+
'''Эксперименты с моделями PLSA, LDA.'''
-
Презентация: [[Media:Voron19ptm-bayes.pdf|(PDF, 1,5 МБ)]] {{важно|— обновление 21.03.2019}}.
+
* Проблема неустойчивости (на синтетических данных).
 +
* Проблема неустойчивости (на реальных данных).
 +
* Проблема переобучения и робастные модели.
 +
 
 +
== Байесовское обучение модели LDA ==
 +
Презентация: [[Media:Voron24ptm-bayes.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 25.10.2024}}.
 +
[https://youtu.be/ZAtfN0ApQh0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=20 Видеозапись]
'''Вариационный байесовский вывод.'''
'''Вариационный байесовский вывод.'''
Строка 117: Строка 161:
* [[Вариационный байесовский вывод]] для модели LDA.
* [[Вариационный байесовский вывод]] для модели LDA.
* VB ЕМ-алгоритм для модели LDA.
* VB ЕМ-алгоритм для модели LDA.
 +
'''Сэмплирование Гиббса.'''
'''Сэмплирование Гиббса.'''
* Основная теорема о сэмплировании Гиббса.
* Основная теорема о сэмплировании Гиббса.
* [[Сэмплирование Гиббса]] для модели LDA.
* [[Сэмплирование Гиббса]] для модели LDA.
* GS ЕМ-алгоритм для модели LDA.
* GS ЕМ-алгоритм для модели LDA.
 +
'''Замечания о байесовском подходе.'''
'''Замечания о байесовском подходе.'''
* Оптимизация гиперпараметров в LDA.
* Оптимизация гиперпараметров в LDA.
Строка 127: Строка 173:
* Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.
* Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.
-
'''Дополнительный материал:'''
+
== Тематические модели сочетаемости слов ==
-
* ''Потапенко А. А.'' [[Media:potapenko16BayesTM.pdf|Байесовское обучение тематических моделей]]. 2016.
+
Презентация: [[Media:Voron24ptm-cooc.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 07.11.2024}}.
-
 
+
[https://youtu.be/zuN5HECqv3I?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt Видеозапись]
-
== Мультимодальные тематические модели ==
+
-
Презентация: [[Media:Voron19ptm-modal.pdf|(PDF, 1,4 МБ)]] {{важно|— обновление 28.03.2019}}.
+
-
 
+
-
'''Мультиязычные тематические модели.'''
+
-
* Параллельные и сравнимые коллекции.
+
-
* Регуляризаторы для учёта двуязычных словарей.
+
-
* Кросс-язычный информационный поиск.
+
-
'''Трёхматричные и гиперграфовые модели.'''
+
-
* Модели трёхматричных разложений. Понятие порождающей модальности.
+
-
* Автор-тематическая модель (author-topic model).
+
-
* Модель для выделения поведений объектов в видеопотоке.
+
-
'''Тематические модели транзакционных данных.'''
+
-
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
+
-
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
+
-
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
+
-
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
+
-
 
+
-
== Тематические модели совстречаемости слов ==
+
-
Презентация: [[Media:Voron19ptm-cooc.pdf|(PDF, 1,9 МБ)]] {{важно|— обновление 13.04.2019}}.
+
'''Мультиграммные модели.'''
'''Мультиграммные модели.'''
Строка 154: Строка 181:
* Модель Topical N-grams (TNG).
* Модель Topical N-grams (TNG).
* Мультимодальная мультиграммная модель.
* Мультимодальная мультиграммная модель.
 +
'''Автоматическое выделение терминов.'''
'''Автоматическое выделение терминов.'''
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
-
* Синтаксический разбор. Нейросетевой синтаксический анализатор SyntaxNet.
+
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
* Критерии тематичности фраз.
* Критерии тематичности фраз.
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
 +
'''Тематические модели дистрибутивной семантики.'''
'''Тематические модели дистрибутивной семантики.'''
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
Строка 164: Строка 193:
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
-
* Понятие когерентности (согласованности). Экспериментально установленная связь когерентности и интерпретируемости.
 
* Регуляризаторы когерентности.
* Регуляризаторы когерентности.
Строка 170: Строка 198:
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
== Тематическая сегментация ==
+
== Моделирование локального контекста ==
-
Презентация: [[Media:Voron19ptm-segm.pdf|(PDF,&nbsp;2,0&nbsp;МБ)]] {{важно|— обновление 16.04.2018}}.
+
Презентация: [[Media:Voron24ptm-local.pdf|(PDF,&nbsp;1,8&nbsp;МБ)]] {{важно|— обновление 21.11.2024}}.
 +
[https://youtu.be/Xe36kQPlbHY?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt Видеозапись]
 +
 
 +
'''Линейная тематизация текста.'''
 +
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
 +
* Локализация E-шага.
 +
* Двунаправленная тематическая модель контекста.
 +
* Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.
 +
 
 +
'''Аналогия с моделью само-внимания (self-attention) и трансформером.'''
 +
* Модель внимания Query-Key-Value.
 +
* Трансформер: кодировщик и декодировщик.
 +
* Онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
 +
 
 +
== Моделирование сегментированного текста ==
 +
Презентация: [[Media:Voron24ptm-segm.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 21.11.2024}}.
 +
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 Видеозапись]
-
'''Модели связного текста.'''
 
-
* Тематическая модель предложений и модель коротких сообщений Twitter-LDA.
 
-
* Контекстная документная кластеризация (CDC).
 
-
* Метод лексических цепочек.
 
-
'''Тематическая сегментация.'''
 
-
* Метод TopicTiling. Критерии определения границ сегментов.
 
-
* Критерии качества сегментации. Оптимизация параметров модели TopicTiling.
 
'''Позиционный регуляризатор в ARTM.'''
'''Позиционный регуляризатор в ARTM.'''
* Гипотеза о сегментной структуре текста.
* Гипотеза о сегментной структуре текста.
* Регуляризация и пост-обработка Е-шага. Формулы М-шага.
* Регуляризация и пост-обработка Е-шага. Формулы М-шага.
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
 +
 +
'''Тематические модели предложений.'''
 +
* Тематическая модель предложений senLDA.
 +
* Модель коротких сообщений Twitter-LDA.
 +
* Сегментоиды. Лексические цепочки.
 +
 +
'''Тематическая сегментация текста.'''
 +
* Метод TopicTiling. Критерии определения границ сегментов.
 +
* Критерии качества сегментации.
 +
* Оптимизация параметров модели TopicTiling.
 +
 +
== Мультимодальные тематические модели ==
 +
Презентация: [[Media:Voron24ptm-modal.pdf|(PDF,&nbsp;2,7&nbsp;МБ)]] {{важно|— обновление 05.12.2024}}.
 +
[https://youtu.be/AfwH0A3NJCQ?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
 +
 +
'''Мультиязычные тематические модели.'''
 +
* Параллельные и сравнимые коллекции.
 +
* Регуляризаторы для учёта двуязычных словарей.
 +
* Кросс-язычный информационный поиск.
 +
 +
'''Трёхматричные модели.'''
 +
* Модели трёхматричных разложений. Понятие порождающей модальности.
 +
* Автор-тематическая модель (author-topic model).
 +
* Модель для выделения поведений объектов в видеопотоке.
 +
 +
'''Тематические модели транзакционных данных.'''
 +
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
 +
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
 +
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
 +
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
 +
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
== Анализ зависимостей ==
== Анализ зависимостей ==
-
Презентация: [[Media:Voron19ptm-rel.pdf|(PDF,&nbsp;6,7&nbsp;МБ)]] {{важно|— обновление 01.05.2018}}.
+
Презентация: [[Media:Voron24ptm-rel.pdf|(PDF,&nbsp;2,7&nbsp;МБ)]] {{важно|— обновление 05.12.2024}}.
 +
[https://youtu.be/uKCMr9yK3gw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
'''Зависимости, корреляции, связи.'''
'''Зависимости, корреляции, связи.'''
Строка 192: Строка 261:
* Модель коррелированных тем CTM (Correlated Topic Model).
* Модель коррелированных тем CTM (Correlated Topic Model).
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
 +
'''Время и пространство.'''
'''Время и пространство.'''
* Регуляризаторы времени.
* Регуляризаторы времени.
* Обнаружение и отслеживание тем.
* Обнаружение и отслеживание тем.
* Гео-пространственные модели.
* Гео-пространственные модели.
 +
'''Социальные сети.'''
'''Социальные сети.'''
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
Строка 201: Строка 272:
* Регуляризаторы для выявления социальных ролей пользователей.
* Регуляризаторы для выявления социальных ролей пользователей.
-
== Визуализация и суммаризация тем ==
+
== Именование и суммаризация тем ==
-
Презентация: [[Media:Voron19ptm-vis.pdf|(PDF,&nbsp;6,7&nbsp;МБ)]] {{важно|— обновление 01.05.2018}}.
+
Презентация: [[Media:Voron23ptm-sum.pdf|(PDF,&nbsp;4,3&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
 +
[https://youtu.be/nShxhkPbGWY Видеозапись]
-
'''Средства визуализации тематических моделей.'''
 
-
* Визуализация матричного разложения.
 
-
* Визуализация кластерных структур, динамики, иерархий, сегментации.
 
-
* Проект VisARTM.
 
'''Методы суммаризации текстов.'''
'''Методы суммаризации текстов.'''
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
Строка 213: Строка 281:
* Тематическая модель предложений для суммаризации.
* Тематическая модель предложений для суммаризации.
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
 +
'''Автоматическое именование тем (topic labeling).'''
'''Автоматическое именование тем (topic labeling).'''
* Формирование названий-кандидатов.
* Формирование названий-кандидатов.
Строка 218: Строка 287:
* Оценивание качества именования тем.
* Оценивание качества именования тем.
 +
'''Задача суммаризации темы'''
 +
* Задача ранжирования документов
 +
* Задача фильтрации репрезентативных релевантных фраз.
 +
* Задача генерации связного текста
-
<!---
+
== Проект «Тематизатор» ==
 +
Презентация: [[Media:Voron23ptm-project.pdf|(PDF,&nbsp;6,2&nbsp;МБ)]] {{важно|— обновление 21.09.2023}}.
 +
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
== Анализ разнородных данных ==
+
'''Визуализация тематических моделей'''
-
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
+
* Концепция distant reading.
 +
* Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
 +
* Спектр тем.
 +
* Визуализация матричного разложения.
-
'''Определение числа тем.'''
+
'''Примеры прикладных задач'''
-
* Регуляризатор отбора тем.
+
* Поиск этно-релевантных тем в социальных сетях.
-
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
+
* Анализ программ развития российских вузов.
-
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
+
* Поиск и рубрикация научных статей на 100 языках.
 +
* Проекты Школы Прикладного Анализа Данных.
-
'''Эксперименты по устойчивости.'''
+
'''Анализ требований к «Тематизатору»'''
-
* Эксперименты по неустойчивости LDA на текстовых коллекциях социальных сетей.
+
* Функциональные требования.
-
* Эксперименты на синтетических данных: демонстрация неустойчивости PLSA и LDA.
+
* Требования к интерпретируемости.
-
* Влияние регуляризаторов на устойчивость.
+
* Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
 +
* Этапизация работ.
 +
 
 +
=Отчетность по курсу=
 +
Условием сдачи курса является выполнение индивидуальных практических заданий.
 +
 
 +
'''Рекомендуемая структура отчёта об исследовании:'''
 +
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
 +
* Описание простого решения baseline
 +
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
 +
 
 +
'''Примеры отчётов:'''
 +
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
 +
 
 +
=Литература=
 +
 
 +
# ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. 2023.
 +
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 +
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
 +
 
 +
'''Дополнительная литература'''
 +
 
 +
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. — С. 657–686.
 +
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
 +
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
 +
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
 +
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
 +
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
 +
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
 +
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 +
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
 +
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
 +
-->
 +
 
 +
= Ссылки =
 +
* [[Тематическое моделирование]]
 +
* [[Аддитивная регуляризация тематических моделей]]
 +
* [[Коллекции документов для тематического моделирования]]
 +
* [[BigARTM]]
 +
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
 +
 
 +
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
 +
 
 +
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
 +
 
 +
[[Категория:Учебные курсы]]
 +
 
 +
 
 +
<!---------------------------------------------------
 +
 
 +
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
 +
 
 +
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
 +
 
 +
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
 +
 
 +
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
== Примеры приложений тематического моделирования ==
== Примеры приложений тематического моделирования ==
Строка 247: Строка 413:
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
-
'''Инициализация.'''
 
-
* Случайная инициализация. Инициализация по документам.
 
-
* Контекстная документная кластеризация.
 
-
* Поиск якорных слов. Алгоритм Ароры.
 
'''Траектория регуляризации.'''
'''Траектория регуляризации.'''
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
Строка 257: Строка 419:
* Подходы к скаляризации критериев.
* Подходы к скаляризации критериев.
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
 +
'''Тесты адекватности.'''
'''Тесты адекватности.'''
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
Строка 270: Строка 433:
* Внутренние и внешние критерии качества.
* Внутренние и внешние критерии качества.
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
 +
''' Оценивание качества темы.'''
''' Оценивание качества темы.'''
* Лексическое ядро темы: множество типичных терминов темы.
* Лексическое ядро темы: множество типичных терминов темы.
Строка 277: Строка 441:
* Конфликтность темы: близость темы к другим темам.
* Конфликтность темы: близость темы к другим темам.
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
 +
'''Устойчивость и полнота.'''
'''Устойчивость и полнота.'''
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
 +
'''Критерии качества классификации и ранжирования.'''
'''Критерии качества классификации и ранжирования.'''
* Полнота, точность и F-мера в задачах классификации и ранжирования.
* Полнота, точность и F-мера в задачах классификации и ранжирования.
Строка 288: Строка 454:
* Тематическая модель текста и изображений. Задача аннотирования изображений.
* Тематическая модель текста и изображений. Задача аннотирования изображений.
-->
-->
-
 
-
=Литература=
 
-
 
-
# ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Обзор вероятностных тематических моделей]]. 2019.
 
-
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 
-
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 
-
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 
-
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 
-
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 
-
 
-
<!--
 
-
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 
-
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
 
-
 
-
'''Дополнительная литература'''
 
-
 
-
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. — С. 657–686.
 
-
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
 
-
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
 
-
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
 
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
 
-
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
 
-
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
 
-
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 
-
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 
-
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
 
-
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
 
-
-->
 
-
 
-
= Ссылки =
 
-
* [[Тематическое моделирование]]
 
-
* [[Аддитивная регуляризация тематических моделей]]
 
-
* [[Коллекции документов для тематического моделирования]]
 
-
* [[BigARTM]]
 
-
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 
-
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
 
-
 
-
= Подстраницы =
 
-
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
 
-
 
-
[[Категория:Учебные курсы]]
 

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Задача тематического моделирования

Презентация: (PDF, 1,4 МБ) — обновление 19.09.2024. Видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Онлайновый ЕМ-алгоритм и аддитивная регуляризация

Презентация: (PDF, 1,3 МБ) — обновление 03.10.2024. Видеозапись

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Оффлайновый регуляризованный EM-алгоритм.
  • Улучшение сходимости несмещёнными оценками.
  • Подбор коэффициентов регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.

Тематический информационный поиск

Презентация: (PDF, 4,8 МБ) — обновление 10.10.2024. Видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

Проект «Мастерская знаний»

  • Поисково-рекомендательная система SciSearch.ru
  • Векторный поиск для формирования тематических подборок
  • Требования к тематическим моделям для научного информационного поиска

Оценивание качества тематических моделей

Презентация: (PDF, 1,6 МБ) — обновление 17.10.2024. Видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема определения числа тем.

  • Разреживающий регуляризатор для отбора тем.
  • Эксперименты на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Теория ЕМ-алгоритма

Презентация: (PDF, 2,0 МБ) — обновление 25.10.2024. Видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Общий EM-алгоритм.

  • EM-алгоритм для максимизации неполного правдоподобия.
  • Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
  • Альтернативный вывод формул ARTM.

Эксперименты с моделями PLSA, LDA.

  • Проблема неустойчивости (на синтетических данных).
  • Проблема неустойчивости (на реальных данных).
  • Проблема переобучения и робастные модели.

Байесовское обучение модели LDA

Презентация: (PDF, 1,7 МБ) — обновление 25.10.2024. Видеозапись

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,7 МБ) — обновление 07.11.2024. Видеозапись

Мультиграммные модели.

  • Модель BigramTM.
  • Модель Topical N-grams (TNG).
  • Мультимодальная мультиграммная модель.

Автоматическое выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
  • Регуляризаторы когерентности.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Моделирование локального контекста

Презентация: (PDF, 1,8 МБ) — обновление 21.11.2024. Видеозапись

Линейная тематизация текста.

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага.
  • Двунаправленная тематическая модель контекста.
  • Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.

Аналогия с моделью само-внимания (self-attention) и трансформером.

  • Модель внимания Query-Key-Value.
  • Трансформер: кодировщик и декодировщик.
  • Онлайновый EM-алгоритм с многопроходным локализованным E-шагом.

Моделирование сегментированного текста

Презентация: (PDF, 2,1 МБ) — обновление 21.11.2024. Видеозапись

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация и пост-обработка Е-шага. Формулы М-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Тематические модели предложений.

  • Тематическая модель предложений senLDA.
  • Модель коротких сообщений Twitter-LDA.
  • Сегментоиды. Лексические цепочки.

Тематическая сегментация текста.

  • Метод TopicTiling. Критерии определения границ сегментов.
  • Критерии качества сегментации.
  • Оптимизация параметров модели TopicTiling.

Мультимодальные тематические модели

Презентация: (PDF, 2,7 МБ) — обновление 05.12.2024. Видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Анализ зависимостей

Презентация: (PDF, 2,7 МБ) — обновление 05.12.2024. Видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Именование и суммаризация тем

Презентация: (PDF, 4,3 МБ) — обновление 04.05.2024. Видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Проект «Тематизатор»

Презентация: (PDF, 6,2 МБ) — обновление 21.09.2023. Видеозапись

Визуализация тематических моделей

  • Концепция distant reading.
  • Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
  • Спектр тем.
  • Визуализация матричного разложения.

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Проекты Школы Прикладного Анализа Данных.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
  • Этапизация работ.

Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM. 2023.
  2. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  3. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  4. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  5. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021
Личные инструменты