Участник:Evgeny smirnov
Материал из MachineLearning.
(→Отчет о научно-исследовательской работе) |
(→Отчет о научно-исследовательской работе) |
||
(3 промежуточные версии не показаны) |
Текущая версия
МФТИ, ФУПМ
Кафедра «Интеллектуальные системы»
Направление «Интеллектуальный анализ данных»
evgenii.smirnov@phystech.edu
Отчет о научно-исследовательской работе
Весна 2015, 6-й семестр
Тематическая модель бинарной классификации слов в документах
В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.
Публикация Смирнов Е.А. Воронцов К.В. Полувероятностная тематическая модель для задачи классификации // Машинное обучение и анализ данных. — 2015. — ISSN 2223-3792. (готовится к подаче в журнал)
Весна 2016, 8-й семестр
Суммаризация тем в вероятностных тематических моделях
Одной из главных проблем вероятностых тематических моделей является их понимание. Все существующие методы оценки интерпретируемости тем основываются на методе описания мешком терминов. В данной работе предлагается подход для оценки интерпретируемости, основанный на анализе сжатого представления коллекции документов. Для этого объявляется набор требований к тематической модели, для того чтобы считать её интерпретируемой. Для интерпретируемой модели формируется суммаризация тем --- список предложений для каждой темы, наиболее точно и полно её описывающий, отранжированный по ценности предложений. В вычислительных экспериментах строится интерпретируемая тематическая модель для коллекции документов конференции ММРО и суммаризация её тем.
Публикация Смирнов Е.А. Воронцов К.В. Суммаризация тем в вероятностных тематических моделях // (готовится к подаче в журнал)