Нейросетевые методы обработки изображений (В.В.Китов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (О курсе)
Текущая версия (08:27, 11 февраля 2026) (править) (отменить)
 
(2 промежуточные версии не показаны)
Строка 1: Строка 1:
__NOTOC__
__NOTOC__
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
-
 
-
==Описание 2025 года, в 2026 будут новые темы==
 
==О курсе==
==О курсе==
-
Спецкурс посвящён основам глубокого обучения, а также задачам классификации, сегментации и генерации изображений, используя нейросетевой перенос стиля (neural style transfer) и генеративно-состязательные сети (generative adversarial networks).
+
Спецкурс познакомит слушателей с нейросетями, методами их обучения и регуляризации, задачами обработки изображений, последовательностей и текстов. Будут изучены как задачи классификации и регрессии, так и генеративные модели порождения новых изображений и текстов.
-
 
+
-
Курс самодостаточный, основные понятия и задачи вводятся и подробно разбираются, поэтому спецкурс будет полезен слушателям, не имевшим предварительного знакомства с нейросетями.
+
-
 
+
-
Спецкурс является практико-ориентированным: помимо теории большое внимание уделяется разбору практической реализации изучаемых архитектур. В этом смысле спецкурс является органичным дополнением обязательного курса “Глубокое машинное обучение”.
+
-
 
+
-
В частности, разбираются основы работы с библиотекой PyTorch, реализации многослойного персептрона, автокодировщика, симаских сетей, RBF-сетей, свёрточных и генеративно-состязательных сетей.
+
-
Для прохождения спецкурса необходимо сдать устный экзамен по основным теоретическим темам, а также сдать практикум.
+
Изложение будет вестись с самых основ, поэтому спецкурс подойдет бакалаврам 2 и 3 курса. Бакалаврам 4 курса спецкурс будет интересен тем, что в нём особый акцент будет сделан на практическую реализацию нейросетей.
-
Пройденный спецкурс вы можете позже перезачесть в учебной части на 4м курсе (по учебному плану вам тогда нужно проходить спецкурс по выбору).
+
В частности, будут практические семинары на Python+PyTorch по сравнению методов оптимизации и регуляризации нейросетей, классификации/локализации/стилизации и генерации изображений. Применим продвинутые архитектуры для распознавания пользовательских действий по данным акселерометров, создадим систему автодополнения поисковых запросов и развернём чат-бота локально на компьютере.
==Лектор==
==Лектор==
Строка 41: Строка 33:
* Задача переноса стиля и её практическая реализация.
* Задача переноса стиля и её практическая реализация.
* Генеративно-состязательные сети.
* Генеративно-состязательные сети.
-
* Реализация генеративно-состязательных сетей в PyTorch.
+
* Рекуррентные сети, трансформеры, обработка текстов.
==Практикум==
==Практикум==
Строка 54: Строка 46:
==Время занятий==
==Время занятий==
-
По понедельникам 16:50 - 18:20, ауд. 510.
+
По понедельникам 18:00 - 19:30 (можем немного позже заканчивать), ауд. 658.
-
Первое занятие - 17.02.2025.
+
Первое занятие - 16.02.2026.
==Рекомендуемые ресурсы==
==Рекомендуемые ресурсы==

Текущая версия


О курсе

Спецкурс познакомит слушателей с нейросетями, методами их обучения и регуляризации, задачами обработки изображений, последовательностей и текстов. Будут изучены как задачи классификации и регрессии, так и генеративные модели порождения новых изображений и текстов.

Изложение будет вестись с самых основ, поэтому спецкурс подойдет бакалаврам 2 и 3 курса. Бакалаврам 4 курса спецкурс будет интересен тем, что в нём особый акцент будет сделан на практическую реализацию нейросетей.

В частности, будут практические семинары на Python+PyTorch по сравнению методов оптимизации и регуляризации нейросетей, классификации/локализации/стилизации и генерации изображений. Применим продвинутые архитектуры для распознавания пользовательских действий по данным акселерометров, создадим систему автодополнения поисковых запросов и развернём чат-бота локально на компьютере.

Лектор

Виктор Владимирович Китов, к.ф.-м.н., преподаватель кафедры математических методов прогнозирования ВМК МГУ.

Почта: v.v.kitov(at)yandex.ru.

Требования к слушателям

Необходимы базовые знания по математическому анализу, линейной алгебре и теории вероятностей. Предварительных знаний по нейронным сетям и методам обработки изображений не требуется.

Программа курса

  • Введение в глубокое обучение.
  • Многослойный персептрон. Основные функции активации и функции потерь.
  • Автокодировщик.
  • Работа в среде Jupyter Lab, Jupyter Notebook. Средства отладки кода.
  • Методы оптимизации нейросетей.
  • Основы работы с PyTorch, автоматическое дифференцирование, реализация простейших нейросетей.
  • Операции свёртки и пулинга. Свёрточные нейросети для обработки текстов и изображений.
  • Основные свёрточные архитектуры для классификации изображений.
  • Реализация свёрточных сетей и использование предобученных сетей в PyTorch.
  • Сегментация изображений.
  • Реализация задачи супер-разрешения (super-resolution) и сиамских сетей в PyTorch.
  • Задача переноса стиля и её практическая реализация.
  • Генеративно-состязательные сети.
  • Рекуррентные сети, трансформеры, обработка текстов.

Практикум

В рамках практикума необходимо реализовать улучшенния базовых архитектур, разобранных на практических семинарах. От студентов второго курса дополнительно требуется сделать презентацию научной статьи.

Прохождение спецкурса

Для успешной сдачи спецкурса необходимо сдать практикум и устный экзамен.

Регистрация на курс

Регистрация на курс происходит на самом спецкурсе по факту посещения, дополнительные действия не требуются.

Время занятий

По понедельникам 18:00 - 19:30 (можем немного позже заканчивать), ауд. 658.

Первое занятие - 16.02.2026.

Рекомендуемые ресурсы

Личные инструменты