Участник:Andriygav
Материал из MachineLearning.
(→Выступления на конференциях и семинарах) |
(→Выступления на конференциях и семинарах) |
||
Строка 17: | Строка 17: | ||
== Выступления на конференциях и семинарах == | == Выступления на конференциях и семинарах == | ||
* 12 октября 2018. '''[[Интеллектуализация обработки информации (конференция)/2018|ИОИ-2018]]'''. '''[[Media:Grabovoy.pdf|Автоматическое определение релевантности параметров нейросети]]'''. | * 12 октября 2018. '''[[Интеллектуализация обработки информации (конференция)/2018|ИОИ-2018]]'''. '''[[Media:Grabovoy.pdf|Автоматическое определение релевантности параметров нейросети]]'''. | ||
+ | * 29 ноября 2019. '''61-я Всероссийская научная конференция МФТИ'''. ''Поиск оптимальной модели при помощи алгоритмов прореживания'''. |
Версия 17:02, 29 ноября 2018
Содержание |
Грабовой Андрей
- МФТИ, ФУПМ
- Интеллектуальные системы
- Интеллектуальный анализ данных
- E-mail: grabovoy.av@phystech.edu andriy.graboviy@mail.ru
Весна 2018, 6й семестр
Автоматическое определение релевантности параметров нейросети
Работа посвящена оптимизации структуры нейронной сети. Предполагается, что число параметров нейроной сети можно существенно снизить без значимой потери качества и без значимого повышения дисперсии функции ошибки. Предлагается метод прореживания параметров нейронной сети, основанный на автоматическом определении релевантности параметров. Для определения релевантности параметров, предлагается проанализировать ковариационую матрицу апостериорного распределения параметров и удалить из нейросети наименее релевантные и мультиколлинеарные параметры. Для определения мультиколлинеарности предлагается использовать метод Белсли. Для анализа качества представленного алгоритма проводятся эксперименты на выборке Boston Housing, а также на синтетических данных.
Осень 2018, 7й семестр
Выступления на конференциях и семинарах
- 12 октября 2018. ИОИ-2018. Автоматическое определение релевантности параметров нейросети.
- 29 ноября 2019. 61-я Всероссийская научная конференция МФТИ'. Поиск оптимальной модели при помощи алгоритмов прореживания.