Прикладная алгебра (курс лекций, С.И. Гуров)
Материал из MachineLearning.
(→Материалы) |
|||
Строка 8: | Строка 8: | ||
Свои вопросы по курсу и пожелания можно направлять письмом по адресу ''sgur@cs.msu.ru'' | Свои вопросы по курсу и пожелания можно направлять письмом по адресу ''sgur@cs.msu.ru'' | ||
- | В осеннем семестре | + | В осеннем семестре 2017/2018 уч. г. занятия проходят на ВМК по понедельникам в ауд. П-8, начало в 12-50. |
- | + | ||
- | + | ||
== Новости == | == Новости == | ||
- | + | Здесь будут появляться актуальные новости по курсу | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
== Контрольная работа == | == Контрольная работа == | ||
В программе курса предусмотрена письменная контрольная работа. Успешное написание контрольной работы является обязательным условием допуска к экзамену по курсу. При отсутствии допуска студент пишет контрольную работу на экзамене и, в случае успеха, сдает экзамен на первой пересдаче. При написании контрольной работы разрешается пользоваться любыми бумажными материалами, а также калькуляторами. Использование электронных устройств (кроме калькуляторов) запрещено. | В программе курса предусмотрена письменная контрольная работа. Успешное написание контрольной работы является обязательным условием допуска к экзамену по курсу. При отсутствии допуска студент пишет контрольную работу на экзамене и, в случае успеха, сдает экзамен на первой пересдаче. При написании контрольной работы разрешается пользоваться любыми бумажными материалами, а также калькуляторами. Использование электронных устройств (кроме калькуляторов) запрещено. | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
== Материалы == | == Материалы == | ||
- | + | Здесь будут появляться материалы лекций | |
== Программа курса == | == Программа курса == |
Версия 12:22, 30 августа 2017
Обзорный курс для студентов 3-го потока ВМК МГУ по основам алгебры (группы, кольца, поля, частично-упорядоченные множества) и её приложениям в кодировании и комбинаторике.
Лектор: Гуров Сергей Исаевич
Ассистент: Кропотов Д.А.
Свои вопросы по курсу и пожелания можно направлять письмом по адресу sgur@cs.msu.ru
В осеннем семестре 2017/2018 уч. г. занятия проходят на ВМК по понедельникам в ауд. П-8, начало в 12-50.
Новости
Здесь будут появляться актуальные новости по курсу
Контрольная работа
В программе курса предусмотрена письменная контрольная работа. Успешное написание контрольной работы является обязательным условием допуска к экзамену по курсу. При отсутствии допуска студент пишет контрольную работу на экзамене и, в случае успеха, сдает экзамен на первой пересдаче. При написании контрольной работы разрешается пользоваться любыми бумажными материалами, а также калькуляторами. Использование электронных устройств (кроме калькуляторов) запрещено.
Материалы
Здесь будут появляться материалы лекций
Программа курса
Конечные поля (поля Галуа)
- Группы и кольца (напоминание)
- Поле вычетов по модулю простого числа
- Вычисление элементов в конечных полях
- Линейная алгебра над конечным полем
- Корни многочленов над конечным полем
- Существование и единственность поля Галуа из элементов
- Циклические подпространства
- Решение задач
Коды, исправляющие ошибки
- Помехоустойчивое кодирование, блоковое кодирование, коды Хэмминга
- Групповые (линейные) коды
- Циклические коды
- Коды БЧХ
- Решение задач
Теория перечисления Пойя
- Действие группы на множестве
- Применение леммы Бернсайда для решения комбинаторных задач
- Применение теоремы Пойя для решения комбинаторных задач
Литература
- Воронин В.П. Дополнительные главы дискретной математики, ф-т ВМК, 2002.
- Гуров С.И. Булевы алгебры, упорядоченные множества, решетки: определения, свойства, примеры. Либроком, 2013.
- Журавлев Ю.И., Флеров Ю.А., Вялый М.Н. Дискретный анализ. Основы высшей алгебры. М3-Пресс, 2007.
- Лидл Р., Нидеррайтер Г. Конечные поля: в 2-х т. Мир, 1988.
- Нефедов В.Н., Осипова В.А. Курс дискретной математики, МАИ, 1992.
- Ромащенко А.Е., Румянцев А.Ю., Шень А. Заметки по теории кодирования. МЦНМО, 2011.
- Lin S., Costello D. Error Control Coding Fundamentals and Applications. Prentice-Hall, 1983.
- Берлекэмп Э. Алгебраическая теория кодирования. - М.: Мир, 1971.
- Блейхут Р. Теория и практика кодов, контролирующих ошибки. - М.: Мир, 1986.
- Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. - М.: Связь. - 1979.
- Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. – М.: Техносфера. - 2006.
- Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. – М.: Мир. – 1976.
См. также
Страница кафедры математических методов прогнозирования ВМК МГУ