Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары
Материал из MachineLearning.
(Различия между версиями)
(+ спецкурс Дьяконова) |
(→Расписание спецкурсов и спецсеминаров в весеннем семестре 2012/2013 уч.г.) |
||
Строка 65: | Строка 65: | ||
|- | |- | ||
!18:05 – 19:40 | !18:05 – 19:40 | ||
- | | | + | | <small> C/C [[Алгебра над алгоритмами и эвристический поиск закономерностей|ААЭПЗ]], [[Участник:Dj|А.Г. Дьяконов]], 510</small> |
+ | |||
| <small>С/С [[vetrovsem|БММО]], [[Участник:Dmitry Vetrov|Ветров Д.П.]], 526б<br> | | <small>С/С [[vetrovsem|БММО]], [[Участник:Dmitry Vetrov|Ветров Д.П.]], 526б<br> | ||
С/К [[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|НМАДК]], [[Участник:Rvv|В.В. Рязанов]], 510</small> | С/К [[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|НМАДК]], [[Участник:Rvv|В.В. Рязанов]], 510</small> |
Версия 19:54, 8 октября 2013
|
|
| Тел. +7-495-939-4202 e-mail: Ученый секретарь: Д.П. Ветров Все контакты |
Содержание[убрать] |
Расписание спецкурсов и спецсеминаров в весеннем семестре 2012/2013 уч.г.
Пара | Понедельник | Вторник | Среда | Четверг | Пятница |
---|---|---|---|---|---|
8:45 – 10:20 | |||||
10:30 – 12:05 | |||||
12:15 – 13:50 | |||||
14:35 – 16:10 | |||||
16:20 – 17:55 | С/К ЛАДР, Е.В. Дюкова, 645 С/К ЗАВГ, Л.М. Местецкий, 609 | С/К БММО, Ветров Д.П., 524 | |||
18:05 – 19:40 | C/C ААЭПЗ, А.Г. Дьяконов, 510 | С/С БММО, Ветров Д.П., 526б С/К НМАДК, В.В. Рязанов, 510 | С/К МПДЭЗМД, О.В. Сенько, 612 | С/К ВТМ, Воронцов К.В., 607 | |
20:00 – 21:35 |
Спецкурсы
- Вероятностные тематические модели, К.В. Воронцов, проходит по пятницам в ауд. 607, начало в 18-00. Первое занятие 13 сентября.
- Байесовские методы машинного обучения, Д.П. Ветров, Д.А. Кропотов, проходит по вторникам в ауд. 524, начало в 16-20. Первое занятие 1 октября.
- В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
- Задачи и алгоритмы вычислительной геометрии, Л.М. Местецкий, проходит по понедельникам в ауд. 609, начало в 16-20. Приглашаются студенты 2-4 курсов. Первое занятие состоится 30 сентября (понедельник).
- Логический анализ данных в распознавании, Е.В. Дюкова, проходит по понедельникам в ауд. 645, начало в 16-20. Первое занятие состоится 30 сентября.
- Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
- Методы поиска достоверных эмпирических закономерностей в многомерных данных, О.В. Сенько, проходит по средам в ауд. 612, начало в 18-00. Первое занятие состоится 2 октября (среда).
- Нестатистические методы анализа данных и классификации, В.В. Рязанов, проходит по вторникам в ауд. 510, начало в 18-00. Первое занятие состоится 24 сентября.
- Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях.
- Прикладные задачи анализа данных, А.Г. Дьяконов, проходит по понедельникам, начало в 16-20.
- Исчисления высказываний классической логики, С.И. Гуров.
- В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
- Логико-статистические модели в распознавании, прогнозировании и интеллектуальном анализе данных, О.В. Сенько.
- Рассматриваются методы интеллектуального анализа данных, основанные на выделении в многомерном пространстве прогностических переменных областей, в которых значения прогнозируемой переменной достоверно отличаются от средних значений по всей выборке. Верификация выявленных закономерностей проводится с помощью рандомизированных перестановочных тестов. Приводятся примеры использования рассматриваемых методов при решении разнообразных прикладных задач.
- Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус. Лекции проходят один раз в две недели по 4 академических часа.
- Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
- Вычислительные задачи математической биологии, А.Н. Панкратов. Лекции проходят один раз в две недели по 4 академических часа.
- В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
- Методы оптимизации в машинном обучении, Д.А. Кропотов.
- В спецкурсе рассматриваются классические и современные методы непрерывной оптимизации, а также особенности их применения для задач оптимизации, возникающих в машинном обучении. Основной упор в изложении делается на практические аспекты реализации и использования методов. Спецкурс поддерживается практическими заданиями.
- Извлечение информации из изображений, И.Б. Гуревич.
- В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
- Теория надёжности обучения по прецедентам, К.В. Воронцов.
- Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
- Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий.
- Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
- Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
- Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
- Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
- Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.
Спецсеминары
- Байесовские методы машинного обучения, Д.П.Ветров, проходит по вторникам в ауд. 526б, начало в 18-10. Первое заседание — 10 сентября.
- Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования, К.В.Воронцов.
- Учебно-научный семинар «Интеллектуальный анализ данных: новые задачи и методы», доц., к.ф.-м.н. С.И.Гуров, доц., к.ф.-м.н. А.И.Майсурадзе.
- Комбинаторные основы теории информации, В.К.Леонтьев.
- Вычислительные задачи математической биологии и биофизики, С.А.Махортых, А.Н.Панкратов.
Ссылки
http://vmk.somee.com — страница со спецкурсами и спецсеминарами факультета ВМК.