Участник:Anton/Песочница

Материал из MachineLearning.

< Участник:Anton(Различия между версиями)
Перейти к: навигация, поиск
 
(11 промежуточных версий не показаны.)
Строка 25: Строка 25:
Ответом (сегментацией изображения) является аргминимум бинарной субмодулярной функции совместимости (максимизация супермодулярной функции), состоящей из унарных и парных потенциалов: <tex> E(X, Y, W) </tex>. Здесь X — признаки, Y — «суперпиксельная» сегментация,
Ответом (сегментацией изображения) является аргминимум бинарной субмодулярной функции совместимости (максимизация супермодулярной функции), состоящей из унарных и парных потенциалов: <tex> E(X, Y, W) </tex>. Здесь X — признаки, Y — «суперпиксельная» сегментация,
W — параметры модели. Функция Е выглядит следующим образом: <br>
W — параметры модели. Функция Е выглядит следующим образом: <br>
-
<tex> E(X, Y, W) = \sum_{p \in V} ( \vec{x}_p^T \vec{w}_U) y_p + \sum_{(p, q) \in E} (\vec{x}_{pq}^T \vec{w}_P) [y_p \neq y_q] </tex>
+
<tex> E(X, Y, W) = \sum_{p \in V} ( \vec{x}_p^T \vec{w}^U) y_p + \sum_{(p, q) \in E} (\vec{x}_{pq}^T \vec{w}^P) [y_p \neq y_q] </tex>
-
Здесь V — множество суперпикселей изображения, Е — система соседства суперпикселей, вообще говоря, не являющаяся регулярной решеткой; переменные <tex>y_p</tex> — метки классов, 0 — фон, 1 — объект; <tex> \vec{x}_p </tex> — векторы унарных признаков для суперпикселей; <tex> \vec{x}_{pq} </tex> — векторы парных признаков для пар соседних суперпикселей; <tex> W = (\vec{w}_U, \vec{w}_P) </tex> — веса унарных и парных признаков.
+
Здесь V — множество суперпикселей изображения, Е — система соседства суперпикселей, вообще говоря, не являющаяся регулярной решеткой; переменные <tex>y_p</tex> — метки классов, 0 — фон, 1 — объект; <tex> \vec{x}_p </tex> — векторы унарных признаков для суперпикселей; <tex> \vec{x}_{pq} </tex> — векторы парных признаков для пар соседних суперпикселей; <tex> W = (\vec{w}^U, \vec{w}^P) </tex> — веса унарных и парных признаков.
-
Заметим, что на лекции энергия E формулировалась несколько иначе:
+
Заметим, что если для всех пар соседних суперпикселей величины <tex> \vec{x}_{pq}^T \vec{w}^P </tex> неотрицательны, то энергию E можно эффективно минимизировать при помощи алгоритма построения минимального разреза графа.
-
<tex> E(X, Y, W) = \sum_{k\in\{0, 1\}}\sum_{p \in V} ( \vec{x}_p^T \vec{w}_U^k) [y_p = k] + \sum_{(p, q) \in E} (\vec{x}_{pq}^T \vec{w}_P) [y_p \neq y_q] </tex>.
+
Приведенный выше способ записи энергии E отличается от способа записи, разобранного на лекции, в двух местах:
 +
# слагаемые, образующие парные потенциалы, записывались так: <tex>\sum_{(p, q) \in E} \sum_{k, \ell \in \{0, 1\}} (\vec{x}_{pq}^T \vec{w}^P_{k\ell}) [y_p = k][y_q = \ell];</tex> в рамках данного задания для упрощения работы парные потенциалы ограничиваются только обобщенными потенциалами Поттса, что соответствует следующим ограничениям на веса: <tex>\vec{w}^P_{00} = \vec{w}^P_{11} = 0; \; \vec{w}^P_{10} = \vec{w}^P_{01}</tex>;
 +
# слагаемые, образующие унарные потенциалы, записывались так: <tex>\sum_{k\in\{0, 1\}}\sum_{p \in V} ( \vec{x}_p^T \vec{w}^U_k) [y_p = k];</tex> в рамках данного задания для ускорения работы алгоритма вместо весов за все классы используются только веса, относящиеся классу «объект».
-
Оба способа записи приводят к одним и тем же результатам для случая двух классов, но первый требует меньшего количества весов W, а значит приводит к более быстрому алгоритму.
+
Ограничения накладываемые на веса, соответствующие парным признаком уменьшают гибкость модели. Упрощение, связанное с унарными потенциалами не влияет на гибкость модели (верно только для случая двух классов).
В качестве унарных признаков обычно выбирают гистограммы по мешкам слов, построенных по каким-либо локальным дескрипторам изображений. В качестве парных признаков выбирают различных обобщенные модели Поттса; парный признак, равный одной и той же константе по всем парам соседних суперпикселей, соответствует обычной модели Поттса.
В качестве унарных признаков обычно выбирают гистограммы по мешкам слов, построенных по каким-либо локальным дескрипторам изображений. В качестве парных признаков выбирают различных обобщенные модели Поттса; парный признак, равный одной и той же константе по всем парам соседних суперпикселей, соответствует обычной модели Поттса.
-
 
-
Заметим, что если для всех пар соседних суперпикселей величины <tex> \vec{x}_{pq}^T \vec{w}_P </tex> неотрицательны, то энергию E можно эффективно минимизировать при помощи алгоритма построения минимального разреза графа.
 
Параметры модели W можно настраивать при помощи структурного метода опорных векторов (sSVM), решая оптимизационную задачу при помощи метода отсекающих плоскостей.
Параметры модели W можно настраивать при помощи структурного метода опорных векторов (sSVM), решая оптимизационную задачу при помощи метода отсекающих плоскостей.
-
Поскольку классы не сбалансированы (на изображениях пикселей фона намного больше, чем пикселей объекта), расстояние Хэмминга между произвольной и правильной сегментациями не является адекватной мерой качества сегментации. В рамках данного задания используется ошибка сегментации определяется количеством правильно распознанных пикселей каждого класса, взвешенным на общее количество пикселей этого класса на изображении:
+
Поскольку классы не сбалансированы (на изображениях пикселей фона намного больше, чем пикселей объекта), расстояние Хэмминга между произвольной и правильной сегментациями не является адекватной мерой качества сегментации. В рамках данного задания ошибка сегментации определяется количеством неправильно распознанных пикселей каждого класса, взвешенным на общее количество пикселей этого класса на изображении:
<tex> error(T, \hat{T}) = \frac{\sum_i [t_i \neq 1][\hat{t}_i = 1]}{\sum_i [\hat{t}_i = 1]} + \frac{\sum_i [t_i \neq 0][\hat{t}_i = 0]}{\sum_i [\hat{t}_i = 0]}</tex>.
<tex> error(T, \hat{T}) = \frac{\sum_i [t_i \neq 1][\hat{t}_i = 1]}{\sum_i [\hat{t}_i = 1]} + \frac{\sum_i [t_i \neq 0][\hat{t}_i = 0]}{\sum_i [\hat{t}_i = 0]}</tex>.
Строка 49: Строка 49:
=== Задание ===
=== Задание ===
В рамках 1-го этапа задания необходимо
В рамках 1-го этапа задания необходимо
-
# показать эквивалентность формулировок структурного метода опорных векторов, получаемых при двух разных способах записи энергии E.
+
# выписать формулу для ошибки, усредненной по классам в терминах суперпикселей Y;
-
# выписать формулу для ошибки, усредненной по классам в терминах суперпикселей Y; показать как решать задачу <tex> \max_Y (-E(X, Y, W) + error(T(Y), \hat{T}))</tex> при помощи алгоритма построения разреза графа;
+
# показать как решать задачу <tex> \max_Y (-E(X, Y, W) + error(T(Y), \hat{T}))</tex> при помощи алгоритма построения разреза графа;
# реализовать процедуру обучения при помощи структурного метода опорных векторов (библиотеки SVM-struct) и процедуру тестирования для задачи сегментации изображений;
# реализовать процедуру обучения при помощи структурного метода опорных векторов (библиотеки SVM-struct) и процедуру тестирования для задачи сегментации изображений;
# протестировать реализованные процедуры на модельных данных, используя хотя бы 1 парный признак;
# протестировать реализованные процедуры на модельных данных, используя хотя бы 1 парный признак;
Строка 72: Строка 72:
Названия файлов, относящихся к каждому объекту обучающей выборки, начинаются с названия объекта: imgTrain_{номер файла}. Для каждого объекта выданы следующие файлы:
Названия файлов, относящихся к каждому объекту обучающей выборки, начинаются с названия объекта: imgTrain_{номер файла}. Для каждого объекта выданы следующие файлы:
-
*само изображение: imgTrain_XXX.png
+
*изображение: imgTrain_XXX.png
*правильная разметка изображения: imgTrain_XXX_groundtruth.png
*правильная разметка изображения: imgTrain_XXX_groundtruth.png
*mat-файлы, содержащие признаки и суперпиксели для изображения: imgTrain_XXX_data.mat. В каждом файле присутствуют следующие переменные:
*mat-файлы, содержащие признаки и суперпиксели для изображения: imgTrain_XXX_data.mat. В каждом файле присутствуют следующие переменные:
** superpixelMap — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
** superpixelMap — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
-
** neighborhood — массив типа double размером #(пары соседних супепикселей) x 2; два столбца содержат номера соседних суперпикселей;
+
** neighborhood — массив типа double размером #(пары соседних супепикселей) x 2; каждая строка содержит номера соседних суперпикселей;
** unaryFeatures — массив типа single размером #(унарные признаки) x #(суперпиксели).
** unaryFeatures — массив типа single размером #(унарные признаки) x #(суперпиксели).
-
Здесь и далее под #(название объекта) обозначается количество таких объектов.
+
Здесь и далее под #(название объекта) обозначается количество объектов.
Названия файлов, относящихся к каждому объекту тестовой выборки, начинаются с названия объекта: imgTest_{номер файла}. Для каждого объекта выданы следующие файлы:
Названия файлов, относящихся к каждому объекту тестовой выборки, начинаются с названия объекта: imgTest_{номер файла}. Для каждого объекта выданы следующие файлы:
-
*само изображение: imgTest_XXX.png
+
*изображение: imgTest_XXX.png
*mat-файлы, содержащие признаки и суперпиксели для изображения: imgTest_XXX_data.mat. В каждом файле присутствуют следующие переменные:
*mat-файлы, содержащие признаки и суперпиксели для изображения: imgTest_XXX_data.mat. В каждом файле присутствуют следующие переменные:
** superpixelMap — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
** superpixelMap — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
 +
** neighborhood — массив типа double размером #(пары соседних супепикселей) x 2; каждая строка содержит номера соседних суперпикселей;
** unaryFeatures — массив типа single размером #(унарные признаки) x #(суперпиксели).
** unaryFeatures — массив типа single размером #(унарные признаки) x #(суперпиксели).
Строка 98: Строка 99:
|
|
{|border="0"
{|border="0"
-
|X — обучающая выборка, массив типа cell размера N x 1, где N - размер обучающей выборки; каждый элемент массива представляет собой структуру со следующими полями:
+
|X — обучающая выборка, массив типа cell размера #(объекты в выборке) x 1; каждый элемент массива представляет собой структуру со следующими полями:
|-
|-
|&nbsp;&nbsp; 'superpixelMap' — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
|&nbsp;&nbsp; 'superpixelMap' — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
Строка 104: Строка 105:
|&nbsp;&nbsp; 'unaryFeatures' — массив типа single размером #(унарные признаки) x #(суперпиксели);
|&nbsp;&nbsp; 'unaryFeatures' — массив типа single размером #(унарные признаки) x #(суперпиксели);
|-
|-
-
|&nbsp;&nbsp; 'pairwiseFeatures' — массив типа double размером #(пары соседних супепикселей) x (#(парные признаки) + 2);
+
|&nbsp;&nbsp; 'pairwiseFeatures' — массив типа double размером #(пары соседних супепикселей) x (#(парные признаки) + 2); первые два столбца содержат номера соседних суперпикселей; столбцы, начиная с 3-го содержат парные признаки;
|-
|-
-
|Y — ответы на обучающей выборки, массив типа cell размера N x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;
+
|Y — ответы на обучающей выборки, массив типа cell размера #(объекты в выборке) x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;
|-
|-
|options — набор параметров метода, структура с полями:
|options — набор параметров метода, структура с полями:
|-
|-
-
|&nbsp;&nbsp; 'С' — параметр C структурного метода опорных векторов
+
|&nbsp;&nbsp; 'С' — параметр C структурного метода опорных векторов;
|-
|-
-
|&nbsp;&nbsp; 'eps' — порог для добавления ограничений в рамках метода отсекающих плоскостей
+
|&nbsp;&nbsp; 'eps' — порог для добавления ограничений в рамках метода отсекающих плоскостей;
|}
|}
|-
|-
Строка 119: Строка 120:
|
|
{|
{|
-
|model — модель, обученная при помощи вашего метода;
+
|model — модель, обученная при помощи вашего метода; вектор типа double длины #(унарные признаки) + #(парные признаки).
|-
|-
|time — время работы алгоритма;
|time — время работы алгоритма;
Строка 135: Строка 136:
|
|
{|border="0"
{|border="0"
-
|X — выборка, массив типа cell размера N x 1, где N - размер обучающей выборки; каждая элемент содержит путь к файлу XXX_data.png для соответствующего изображения;
+
|X — выборка, массив типа cell размера #(объекты в выборке) x 1; каждый элемент массива представляет собой структуру со следующими полями:
|-
|-
-
|model — модель, полученная при помощи процедуры train_sSVM;
+
|&nbsp;&nbsp; 'superpixelMap' — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
 +
|-
 +
|&nbsp;&nbsp; 'unaryFeatures' — массив типа single размером #(унарные признаки) x #(суперпиксели);
 +
|-
 +
|&nbsp;&nbsp; 'pairwiseFeatures' — массив типа double размером #(пары соседних супепикселей) x (#(парные признаки) + 2); первые два столбца содержат номера соседних суперпикселей; столбцы, начиная с 3-го содержат парные признаки;
 +
|-
 +
|model — модель, обученная при помощи вашего метода; вектор типа double длины #(унарные признаки) + #(парные признаки);
|}
|}
|-
|-
Строка 144: Строка 151:
|
|
{|
{|
-
|Y — ответы на выборке X, массив типа cell размера N x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;
+
|Y — ответы на выборке X, массив типа cell размера #(объекты в выборке) x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;
|}
|}
|}
|}
Строка 160: Строка 167:
|train_error — ошибка на обучающей выборке;
|train_error — ошибка на обучающей выборке;
|-
|-
-
|test_Y — ответы на тестовой выборке, массив типа cell размера N x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;
+
|test_Y — ответы на тестовой выборке, массив типа cell размера N x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения.
|}
|}
|}
|}
Строка 167: Строка 174:
=== Рекомендации по выполнению задания ===
=== Рекомендации по выполнению задания ===
-
# Библиотека SVMstruct не позволяет установить ограничения на знак весов парных признаков <tex> \vec{w}_P </tex>. Для минимизации получающихся несубмодулярных функций рекомендуется отбрасывать несубмодулярные ребра.
+
# Библиотека SVM-struct не позволяет установить ограничения на знак весов парных признаков <tex> \vec{w}^P </tex>. Для минимизации получающихся несубмодулярных функций рекомендуется отбрасывать несубмодулярные ребра.
# В качестве модельных данных рекомендуется использовать выборку, состоящую из 2-3 изображений обучающей выборки. При правильной реализации алгоритма точность сегментации изображений, использовавшихся при обучении должна быть высокой (более 97% в терминах ошибки, усредненной по классам).
# В качестве модельных данных рекомендуется использовать выборку, состоящую из 2-3 изображений обучающей выборки. При правильной реализации алгоритма точность сегментации изображений, использовавшихся при обучении должна быть высокой (более 97% в терминах ошибки, усредненной по классам).
-
# Для работы с библиотекой SVMstruct необходимо реализовать функцию поиска наиболее нарушаемого ограничения (CONSTRAINTFN), функцию построения вектора обобщенных признаков (FEATUREN), функцию потерь (LOSSFN). Библиотеку SVMstruct рекомендуется запускать со следующими параметрами: -p 1 -o 2 -w 4 -v 3 -y 0 -c <ваш C> -e <ваш eps>.
+
# Для работы с библиотекой SVM-struct необходимо реализовать функцию поиска наиболее нарушаемого ограничения (CONSTRAINTFN), функцию построения вектора обобщенных признаков (FEATUREN), функцию потерь (LOSSFN). Библиотеку SVMstruct рекомендуется запускать со следующими параметрами: -p 1 -o 2 -w 4 -v 3 -y 0 -c <ваш C> -e <ваш eps>.
-
# РЕКОМЕНДАЦИИ ПО ВЫБОРУ EPS
+
# На этапе отладки параметр eps стоит выбрать достаточно большим (например, 10), чтобы уменьшить время работы алгоритма. На этапе экспериментов значение eps стоит уменьшить на несколько порядков.
-
# При правильной реализации метода, одна операция обучение sSVM должно работать не более часа.
+
# При правильной реализации метода одна операция обучение sSVM на полной выборке должна работать не более получаса.
# В качестве процедуры скользящего контроля рекомендуется выбрать схему [[Скользящий контроль| контроля по 2 блокам]] (2-fold CV).
# В качестве процедуры скользящего контроля рекомендуется выбрать схему [[Скользящий контроль| контроля по 2 блокам]] (2-fold CV).
# Параметр С рекомендуется перебирать по равномерной в логарифмической шкале сетке. При этом в крайних значениях нужно получить ситуации недообучения и переобучения. Начинать перебор лучше с заведомо заниженных значений параметра С, поскольку в этом случае метод работает быстрее.
# Параметр С рекомендуется перебирать по равномерной в логарифмической шкале сетке. При этом в крайних значениях нужно получить ситуации недообучения и переобучения. Начинать перебор лучше с заведомо заниженных значений параметра С, поскольку в этом случае метод работает быстрее.
Строка 179: Строка 186:
[[Media:GM_GraphCut.zip|graphCut]] — MATLAB интерфейс к разрезам графов.
[[Media:GM_GraphCut.zip|graphCut]] — MATLAB интерфейс к разрезам графов.
-
[https://docs.google.com/open?id=0B_PZC3alifN6RUhrYWZuRm1KQVU база данных].
+
[https://docs.google.com/open?id=0B_PZC3alifN6WDExQlR6cktSaUU База данных].
 +
 
 +
[http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html MATLAB библиотека SVM-struct]
=== Оформление задания ===
=== Оформление задания ===

Текущая версия

Задание находится в разработке.

Не приступайте к выполнению задания пока не убрано это сообщение.


Содержание

[убрать]

Начало выполнения задания: 18 апреля 2012

1-й этап сдачи задания: 2 мая 2012, 23:59

2-й этап сдачи задания: 9 мая 2012, 23:59

Среда реализации для всех вариантов — MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.

Сегментация изображений

В рамках данного задания рассматривается задача сегментации изображений на два класса: машина и фон. В дальнейшем работа осуществляется в терминах небольших сегментов изображения — суперпикселей. Заметим, что по «суперпиксельной» сегментации изображения можно однозначно построить «попиксельную» сегментацию.

Ответом (сегментацией изображения) является аргминимум бинарной субмодулярной функции совместимости (максимизация супермодулярной функции), состоящей из унарных и парных потенциалов:  E(X, Y, W) . Здесь X — признаки, Y — «суперпиксельная» сегментация, W — параметры модели. Функция Е выглядит следующим образом:
 E(X, Y, W) = \sum_{p \in V} ( \vec{x}_p^T \vec{w}^U) y_p + \sum_{(p, q) \in E} (\vec{x}_{pq}^T \vec{w}^P) [y_p \neq y_q]

Здесь V — множество суперпикселей изображения, Е — система соседства суперпикселей, вообще говоря, не являющаяся регулярной решеткой; переменные y_p — метки классов, 0 — фон, 1 — объект;  \vec{x}_p  — векторы унарных признаков для суперпикселей;  \vec{x}_{pq}  — векторы парных признаков для пар соседних суперпикселей;  W = (\vec{w}^U, \vec{w}^P) — веса унарных и парных признаков.

Заметим, что если для всех пар соседних суперпикселей величины  \vec{x}_{pq}^T \vec{w}^P неотрицательны, то энергию E можно эффективно минимизировать при помощи алгоритма построения минимального разреза графа.

Приведенный выше способ записи энергии E отличается от способа записи, разобранного на лекции, в двух местах:

  1. слагаемые, образующие парные потенциалы, записывались так: \sum_{(p, q) \in E} \sum_{k, \ell \in \{0, 1\}} (\vec{x}_{pq}^T \vec{w}^P_{k\ell}) [y_p = k][y_q = \ell]; в рамках данного задания для упрощения работы парные потенциалы ограничиваются только обобщенными потенциалами Поттса, что соответствует следующим ограничениям на веса: \vec{w}^P_{00} = \vec{w}^P_{11} = 0; \; \vec{w}^P_{10} = \vec{w}^P_{01};
  2. слагаемые, образующие унарные потенциалы, записывались так: \sum_{k\in\{0, 1\}}\sum_{p \in V} ( \vec{x}_p^T \vec{w}^U_k) [y_p = k]; в рамках данного задания для ускорения работы алгоритма вместо весов за все классы используются только веса, относящиеся классу «объект».

Ограничения накладываемые на веса, соответствующие парным признаком уменьшают гибкость модели. Упрощение, связанное с унарными потенциалами не влияет на гибкость модели (верно только для случая двух классов).

В качестве унарных признаков обычно выбирают гистограммы по мешкам слов, построенных по каким-либо локальным дескрипторам изображений. В качестве парных признаков выбирают различных обобщенные модели Поттса; парный признак, равный одной и той же константе по всем парам соседних суперпикселей, соответствует обычной модели Поттса.

Параметры модели W можно настраивать при помощи структурного метода опорных векторов (sSVM), решая оптимизационную задачу при помощи метода отсекающих плоскостей.

Поскольку классы не сбалансированы (на изображениях пикселей фона намного больше, чем пикселей объекта), расстояние Хэмминга между произвольной и правильной сегментациями не является адекватной мерой качества сегментации. В рамках данного задания ошибка сегментации определяется количеством неправильно распознанных пикселей каждого класса, взвешенным на общее количество пикселей этого класса на изображении:

 error(T, \hat{T}) = \frac{\sum_i [t_i \neq 1][\hat{t}_i = 1]}{\sum_i [\hat{t}_i = 1]} + \frac{\sum_i [t_i \neq 0][\hat{t}_i = 0]}{\sum_i [\hat{t}_i = 0]}.

Здесь T — текущая разметка изображения, \hat{T} — правильная разметка; метка фона — 0, метка объекта — 1; все суммы берутся по всем пикселям изображения.

Задание

В рамках 1-го этапа задания необходимо

  1. выписать формулу для ошибки, усредненной по классам в терминах суперпикселей Y;
  2. показать как решать задачу  \max_Y (-E(X, Y, W)  + error(T(Y), \hat{T})) при помощи алгоритма построения разреза графа;
  3. реализовать процедуру обучения при помощи структурного метода опорных векторов (библиотеки SVM-struct) и процедуру тестирования для задачи сегментации изображений;
  4. протестировать реализованные процедуры на модельных данных, используя хотя бы 1 парный признак;
  5. написать отчет в формате PDF с описанием всех проведенных исследований.

В рамках 2-го этапа задания необходимо

  1. придумать не менее 5 различных парных признаков;
  2. при помощи скользящего контроля подобрать структурный параметр метода С и получить оценку точности алгоритма на обучающей выборке;
  3. при помощи обученного сегментатора получить разметки тестовой выборки изображения; привести примеры удачных и неудачных сегментаций; студенты, получившие наилучшие результаты с точки зрения взвешенного среднего, получат дополнительные баллы;
  4. написать отчет в формате PDF с описанием всех проведенных исследований.

Для выполнения задания выдается:

  1. реализация алгоритма построения разреза графов, совместимая с MATLAB;
  2. реализации структурного метода опорных векторов в библиотеке SVM-struct с интерфейсом под MATLAB: http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html
  3. исходные изображения: обучающая и тестовая выборки;
  4. правильная сегментация изображений обучающей выборки;
  5. суперпиксели изображений обучающей и тестовой выборок, найденные при помощи библиотеки BSR;
  6. признаки для каждого суперпикселя; вектором признаков является гистограмма по мешку из 128 слов, построенному по SIFT; признаки посчитаны при помощи библиотеки VLFeat.

Описание форматов данных

Названия файлов, относящихся к каждому объекту обучающей выборки, начинаются с названия объекта: imgTrain_{номер файла}. Для каждого объекта выданы следующие файлы:

  • изображение: imgTrain_XXX.png
  • правильная разметка изображения: imgTrain_XXX_groundtruth.png
  • mat-файлы, содержащие признаки и суперпиксели для изображения: imgTrain_XXX_data.mat. В каждом файле присутствуют следующие переменные:
    • superpixelMap — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
    • neighborhood — массив типа double размером #(пары соседних супепикселей) x 2; каждая строка содержит номера соседних суперпикселей;
    • unaryFeatures — массив типа single размером #(унарные признаки) x #(суперпиксели).

Здесь и далее под #(название объекта) обозначается количество объектов.

Названия файлов, относящихся к каждому объекту тестовой выборки, начинаются с названия объекта: imgTest_{номер файла}. Для каждого объекта выданы следующие файлы:

  • изображение: imgTest_XXX.png
  • mat-файлы, содержащие признаки и суперпиксели для изображения: imgTest_XXX_data.mat. В каждом файле присутствуют следующие переменные:
    • superpixelMap — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
    • neighborhood — массив типа double размером #(пары соседних супепикселей) x 2; каждая строка содержит номера соседних суперпикселей;
    • unaryFeatures — массив типа single размером #(унарные признаки) x #(суперпиксели).

Спецификация реализуемых функций

Обучение
[model, time] = train_sSVM(X, Y, options)
ВХОД
X — обучающая выборка, массив типа cell размера #(объекты в выборке) x 1; каждый элемент массива представляет собой структуру со следующими полями:
   'superpixelMap' — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
   'unaryFeatures' — массив типа single размером #(унарные признаки) x #(суперпиксели);
   'pairwiseFeatures' — массив типа double размером #(пары соседних супепикселей) x (#(парные признаки) + 2); первые два столбца содержат номера соседних суперпикселей; столбцы, начиная с 3-го содержат парные признаки;
Y — ответы на обучающей выборки, массив типа cell размера #(объекты в выборке) x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;
options — набор параметров метода, структура с полями:
   'С' — параметр C структурного метода опорных векторов;
   'eps' — порог для добавления ограничений в рамках метода отсекающих плоскостей;
ВЫХОД
model — модель, обученная при помощи вашего метода; вектор типа double длины #(унарные признаки) + #(парные признаки).
time — время работы алгоритма;


Предсказание
Y = predict_sSVM(X, model)
ВХОД
X — выборка, массив типа cell размера #(объекты в выборке) x 1; каждый элемент массива представляет собой структуру со следующими полями:
   'superpixelMap' — массив типа double размера, равного размеру изображения; каждому пикселю соответствует номер суперпикселя, в который он попадает;
   'unaryFeatures' — массив типа single размером #(унарные признаки) x #(суперпиксели);
   'pairwiseFeatures' — массив типа double размером #(пары соседних супепикселей) x (#(парные признаки) + 2); первые два столбца содержат номера соседних суперпикселей; столбцы, начиная с 3-го содержат парные признаки;
model — модель, обученная при помощи вашего метода; вектор типа double длины #(унарные признаки) + #(парные признаки);
ВЫХОД
Y — ответы на выборке X, массив типа cell размера #(объекты в выборке) x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения;


Обучение и предсказание для базы с машинами
[train_error, test_Y] = cars()
ВЫХОД
train_error — ошибка на обучающей выборке;
test_Y — ответы на тестовой выборке, массив типа cell размера N x 1; каждый элемент содержит массив типа logical размера, равному размеру изображения.

В каталоге, из которого будет запускаться решение при проверке, будет лежать выданный каталог с данными.

Рекомендации по выполнению задания

  1. Библиотека SVM-struct не позволяет установить ограничения на знак весов парных признаков  \vec{w}^P . Для минимизации получающихся несубмодулярных функций рекомендуется отбрасывать несубмодулярные ребра.
  2. В качестве модельных данных рекомендуется использовать выборку, состоящую из 2-3 изображений обучающей выборки. При правильной реализации алгоритма точность сегментации изображений, использовавшихся при обучении должна быть высокой (более 97% в терминах ошибки, усредненной по классам).
  3. Для работы с библиотекой SVM-struct необходимо реализовать функцию поиска наиболее нарушаемого ограничения (CONSTRAINTFN), функцию построения вектора обобщенных признаков (FEATUREN), функцию потерь (LOSSFN). Библиотеку SVMstruct рекомендуется запускать со следующими параметрами: -p 1 -o 2 -w 4 -v 3 -y 0 -c <ваш C> -e <ваш eps>.
  4. На этапе отладки параметр eps стоит выбрать достаточно большим (например, 10), чтобы уменьшить время работы алгоритма. На этапе экспериментов значение eps стоит уменьшить на несколько порядков.
  5. При правильной реализации метода одна операция обучение sSVM на полной выборке должна работать не более получаса.
  6. В качестве процедуры скользящего контроля рекомендуется выбрать схему контроля по 2 блокам (2-fold CV).
  7. Параметр С рекомендуется перебирать по равномерной в логарифмической шкале сетке. При этом в крайних значениях нужно получить ситуации недообучения и переобучения. Начинать перебор лучше с заведомо заниженных значений параметра С, поскольку в этом случае метод работает быстрее.

Данные для выполнения задания

graphCut — MATLAB интерфейс к разрезам графов.

База данных.

MATLAB библиотека SVM-struct

Оформление задания

Выполненный вариант задания необходимо прислать письмом по адресу bayesml@gmail.com с темой «Задание 5. ФИО». Убедительная просьба присылать выполненное задание только один раз с окончательным вариантом. Новые версии будут рассматриваться только в самом крайнем случае. Также убедительная просьба строго придерживаться заданной выше спецификации реализуемых функций. Очень трудно проверять большое количество заданий, если у каждого будет свой формат реализации.

Письмо должно содержать:

  • PDF-файл с описанием проведенных исследований (отчет должен включать в себя описание выполнения каждого пункта задания с приведением соответствующих графиков, изображений, чисел)
  • train_sSVM.m, predict_sSVM.m, cars.m
  • разметку тестовой выборки в таком же формате, как выдана разметка обучающей выборки
  • Набор вспомогательных файлов при необходимости
Личные инструменты