Оптимальное прореживание нейронных сетей (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Использованная литература: ссылки на участников)
(Исходный код)
Строка 507: Строка 507:
==Исходный код==
==Исходный код==
-
Листинги алгоритмов можно посмотреть здесь:[http://mlalgorithms.svn.sourceforge.net/viewvc/mlalgorithms arglayer.m,backprop.m,damage.m,featuredamage.m...]
+
Листинги алгоритмов можно посмотреть здесь:[http://mlalgorithms.svn.sourceforge.net/viewvc/mlalgorithms/Yudaev2010GAP/ arglayer.m],
 +
[http://mlalgorithms.svn.sourceforge.net/viewvc/mlalgorithms/Yudaev2010GAP/ backprop.m],
 +
[http://mlalgorithms.svn.sourceforge.net/viewvc/mlalgorithms/Yudaev2010GAP/ damage.m],
 +
[http://mlalgorithms.svn.sourceforge.net/viewvc/mlalgorithms/Yudaev2010GAP/ featuredamage.m].
 +
 
==См. также==
==См. также==
*[[Оптимальное прореживание нейронных сетей]]
*[[Оптимальное прореживание нейронных сетей]]

Версия 08:39, 12 марта 2012

Содержание

[убрать]

Постановка задачи

Рассматривается двухслойная нейронная сеть с одним выпускающим нейроном и заведомо достаточно сложной для выбранной задачи топологией. Производится упрощение её структуры путём разрезания наименее значимых связей для повышения обобщающей способности, пока не начнут ухудшаться результаты на контрольной выборке. Наименее значимые связи определяются через приближение гессиана функции потерь H(w)=\frac{\partial^2}{\partial w^2}Q в задаче разделения на 2 класса. Используется дифференцируемое приближение Q(w,X)=\Sigma_{i=1}^n \lambda_y \sigma(-M(w,x_i)) функции потерь E(w,X)=\Sigma_{i=1}^n \lambda_y \theta(-M(w,x_i)), где M(w,x_i)=y_i a(x_i) - отступ (margin) нейронной сети на объекте x_i, \lambda_y - вес соответствующей ошибки, \sigma(z)=\frac{1}{1+e^{-z}} - сигмоидная функция.

Теория

Если функционал качества Q в некоторой точке достаточное число раз дифференцируем(3 раза), то его можно представить в окрестности этой точки в виде Q(w+\delta)=Q(w)+\delta^T \nabla Q(w)+\frac{1}{2}\delta^T H(w)\delta+O(||\delta||^3), где H(w)=\frac{\partial^2}{\partial w^2}Q - гессиан функции потерь. Если считать, что после обучения веса нейросети w соответствуют локальному минимуму функционала качества Q, то в этой точке \nabla Q(w)=0, и приращение фнкции потерь можно считать равным \Delta Q=Q(w+\delta)-Q(w)=\frac{1}{2}\delta^T H\delta. Теперь пусть w_i-некий синаптический вес, его обнуление эквивалентно выполнению e_i^T\delta +w_i=0, где e_i - i-й столбец единичной матрицы порядка, равного размерности вектора весов нейросети. Получаем задачу условной минимизации : \frac{1}{2}\delta^T H\delta \rightarrow min e_i^T\delta +w_i=0 Лагранжиан S=\frac{1}{2}\delta^T H\delta -\lambda (e_i^T \delta +w_i). Решая её, получим оптимальное изменение весов \delta =-\frac{w_i}{H^{-1}_{ii}}H^{-1}e_i и соответствующее приращение лагранжиана(степень выпуклости, она же значимость, salency) S_i=\frac{w_i^2}{2H^{-1}_{ii}}. Для разрезания выбираются веса с наименьшей степенью выпуклости. В процедуре OBD, кроме того, предполагается существенное диагональное преобладание гессиана в локальном минимуме так, что можно пренебречь недиагональными элементами, и полученное соотношение для степени выпуклости вырождается в S_i=\frac{w_i^2}{2H^{-1}_{ii}}=w_i^2 H_{ii}=w_i^2 \frac{\partial^2}{\partial w_i^2}Q.

Методы

В данном прмере для минимизации дифференцируемой модификации функции потерь применяется процедура наискорейшего градиентного спуска с вычислением градиента методом обратного распространения ошибки(back propagation) с мультистартом. Темп обучения на каждом шаге ищется одномерной минимизацией функции потерь в направлении антиградиента с помощью функции Matlab fminbnd. Обучение останавливается, когда найденный таким образом на очередной итерации темп обучения стновится меньше критического значения(2^{-13}). Вторые производные функционала качества по весам(диагональные элементы гессиана) ищутся разностным методомH_ii=\frac{Q(w+\epsilon e_i)-2Q(w)+Q(w-\epsilon e_i)}{\epsilon^2}. На каждом шаге Optimal Brain Damage разрезается ровно 1 синаптический вес до тех пор, пока после очередного разрезания и последующего обучения 2 раза подряд не увеличится значение функции потерь на контрольной выборке.

На модельных данных

Для апробации алгоритма на модельных данных были сгенерированы ( GetNormClass.m) 2 сильно пересекающихся нормально распределённых 10-мерных класса, затем полученная выборка случайным образом поделена на обучающую и контрольную, и с ними поизведены описанные операции над двухслойным персептроном с 10-тью нейронами в каждом скрытом слое. В таблице приведён порядок разрезания синапсов и динамика функционала качества (в % от максимально возможных потерь).

номер слоя испускающий нейрон принимающий нейрон степень выпуклости(salency) качество на обучении(после разрезания) качество на контроле(после разрезания)
0 0 0 0 5.7553 1.4085
3 2 1 -0.1482 10.0719 8.4507
1 9 1 -0.0068 10.0719 8.4507
1 2 3 -0.1248 9.3525 22.5352
1 9 9 -0.0819 10.0719 15.4930
3 -1 1 -0.0278 9.3525 22.5352
1 3 9 -0.025 8.6331 21.1268
1 5 4 -9.5465e-4 8.6331 21.1268
1 6 9 -0.0021 8.6331 15.493
1 3 5 -0.0074 28.0576 42.2535
1 5 5 -0.0115 3.5971 21.1268
1 5 2 -0.0012 3.5971 21.1268
2 1 4 -0.0086 5.036 8.4507
2 8 8 -0.0055 17.2662 35.2113
1 8 9 -0.0288 8.6331 22.5352
1 4 1 -0.0049 12.9496 21.1268
1 1 10 -0.0167 11.5108 22.5352
1 6 1 -0.0021 13.6691 28.169

На рисунке показана динамика изменения функции потерь при разрезании синапсов и последующем обучении(синим - на обучении, красным - на контроле). 350

German Credit Data

Та же процедура проделана на данных кредитного скоринга [1]. Как видно из динамики функции потерь и характеристик разрезаемых синапсов, OBD почти не улучшает качество сети на контольной выборке, из чего можно сделать вывод о низкой степени переобучения, обусловленной, возможно, низкой эффективностью применяемого алгоритма обучения для данного случая.

номер слоя испускающий нейрон принимающий нейрон степень выпуклости(salency) качество на обучении(после разрезания) качество на контроле(после разрезания)
0 0 0 0 7.6722 8.2447
2 -1 2 -0.7672 13.2859 15.4255
1 10 1 -0.0324 12.238 13.7411
2 3 6 -0.0149 14.0719 14.1844
3 4 1 -1.0912e-8 12.0509 13.3865
1 4 3 -8.8795e-4 16.1677 17.7305
1 2 1 -0.0118 11.7889 13.8298
2 1 7 -0.0109 13.5479 14.9823
2 5 6 -0.0282 12.3877 14.273
1 10 5 -9.9848e-4 12.3503 13.3865
3 10 1 -0.0815 14.5958 17.9078
1 4 1 -0.0115 14.6707 15.6915
1 4 10 -0.0017 15.8308 17.9078
1 -1 3 -0.1207 14.6707 16.578
1 2 3 -0.0214 13.6228 16.4894
1 8 10 -1.4583e-7 13.6228 16.4894
1 4 2 -0.0067 21.9311 25.6206
1 -1 5 -0.1584 13.9596 16.7553
1 4 5 -0.0143 14.3713 15.4255
3 6 1 -2.0273e-7 13.9596 17.2872
1 19 6 -1.5601e-5 14.8952 17.6418

Внизу динамика функции потерь с учётом состояний сразу после разрезания и без их учёта.

350350

Далее показана динамика качества сети до существенного увеличения потерь без учёта состояний сразу после разрезания.

350

Отбор признаков

Процедура OBD может также применяться для отбора признаков в модели, точнеее, для удаления наименее информативных признаков. Обычно в таких случаях находят суммарную степень выпуклости весов синапсов, идущих от каждого признака, называемую также значимостью(salency) признака: S(f_i)=\Sigma_{j=1}^P S(w_{ij}), где P - число нейронов в первом слое. После чего разрезают все синапсы от признака, у которого это значение получилось наименьшим.

№ удаляемого признака значение("-"-не указано) степень значимости(salency) потери на обучении(после удаления) потери на контроле(после удаления)
0 - 0 7.5599 8.2447
20 является ли иностранцем 3.0208e5 7.5599 8.2447
8 размер 1 выплаты в % от разового дохода 1.8815e5 7.6722 8.2447
16 количество непогашенных ссуд в данном банке 5.9898e5 13.2111 13.2979
4 на что берётся ссуда(автомобиль,мебель,образование,...) -1.2521e6 12.762 13.7411
12 тип закладываемой собственности 1.3485e5 12.0883 15.6915
9 пол и семейное положение -1.0977e-5 14.0344 17.1986
10 наличие поручителей -2.5131e6 12.3877 12.5
11 срок проживания по текущему адресу 9.3062e-7 15.2695 14.805
2 срок погашения -3.5434e5 8.7575 9.3972
6 размер сбережений 2.5018e5 8.1961 8.7766
15 вид собственности на жильё 9.1573e5 12.8368 15.5142
3 наличие погашенных/непогашенных ссуд 1.1045e5 12.7994 15.0709
1 объём средст на текущем счёте -1.3721e5 14.6332 13.8298
7 срок работы на нынешнем месте 2.0617e5 8.6078 8.6879
17 профессиональный статус 9.1559e5 14.2964 11.5248
14 другие предполагаемые платежи(на период выплаты ссуды) 1.0234e6 14.5584 11.4362
18 число людей, способных подтвердить данные в анкете 2.1884e5 13.0614 10.195
23 - 1.0408e6 14.5958 11.9681
13 возраст 1.8521e6 14.7455 11.4362
19 наличие телефона, зарегистрированного на имя клиента -1.7914e6 14.521 11.4362
5 размер ссуды 3.0175e5 14.2216 12.5
22 - 1.2204e6 14.4461 12.6773
21 - -3.8515e5 14.4087 10.9043
24 - -1.737e6 7.747 8.2447

Далее приведена динамика функции потерь при разрезании признаков с учётом состояний сразу после разрезания и без их учёта. 350350


Исходный код

Листинги алгоритмов можно посмотреть здесь:arglayer.m, backprop.m, damage.m, featuredamage.m.

См. также

Использованная литература

  • 1. Хайкин С. Нейронные сети, полный курс. 2е издание, испр. - М: Вильямс. 2008. - 1103 с. ISBN 978-5-8459-0890-2
  • 2. Bishop Ch.M. Neural Networks for Pattern Recognition. - Oxford: Clarendon Press.1995.
  • 3. Воронцов К.В. Машинное обучение. Лекции.


Данная статья была создана в рамках учебного задания.
Студент: Михаил Юдаев
Преподаватель: В.В.Стрижов
Срок: 28 мая 2009


В настоящее время задание завершено и проверено. Данная страница может свободно правиться другими участниками проекта MachineLearning.ru.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.

Личные инструменты