Метод Белсли
Материал из MachineLearning.
м (→Разложение линейной модели) |
м («Методика Belsley» переименована в «Метод Белсли»: Убрал латинские буквы) |
Версия 07:50, 25 ноября 2010
Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Коллеги, пожалуйста, сделайте пояснения к выкладкам. Статью трудно читать. Очень нужен список литературы: откуда взят этот материал? --Strijov 18:53, 27 августа 2010 (MSD) |
Содержание[убрать] |
Разложение линейной модели
Рассматривается линейная регрессионная модель:
где -– -мерный вектор зависимой переменной, -- , матрица признаков, -- -мерный вектор неизвестных коэффициентов, параметров линейной регрессионной модели. Предполагается, что -мерный вектор случайного возмущения имеет нулевое матожидание и ковариационную матрицу , где -- единичная матрица, а . Будем считать что имеет ранг .
Сингулярное разложение
Если есть коллинеарность между признаками согласно Бэлсли имеет смысл использовать сингулярное разложение(SVD), чтобы определить вовлеченные переменные. Матрица сингулярного разложения определяется как:
Здесь матрица -- ортогональная. Матрица -- диагональная прямоугольная, на диагонали которой стоят неотрицательные числа, сингулярными значениями . Диагональной прямоугольной назовем матрицу, ненулевые элементы которой имеют координаты вида Матрица -- ортогональная, ее столбцы -- собственные вектора .
Существование коллинеарной зависимости влечет близость к нулю некоторых сингулярных значений.
Будем считать, что сингулярных значений близки к нулю.
, или просто , элементы матрицы упорядочены так, что
Выявление части разложения ответственного за мультиколлинеарность
Рассмотрим разбиение
Для такого разбиения и -- диагональные матрицы, а оставшиеся два недиагональных блока -- нулевые.
Матрица содержит достаточно большие сингулярные значения, а содержит близкие к нулю сингулярные значения.
Теперь разделим и :
где и соответствуют первым наибольшим сингулярным значениям, а и содержат векторов, соответствующих малым сингулярным значениям.
Матрица ортогональна, т.е. , так же как и и . Таким образом
выполнено
Так как тоже ортогональная, то верно
Здесь -- нулевая матрица размера .
Таким образом, используя (2)-(6), запишем разложение:
Обозначим слагаемые в правой части как
Заметим что получившиеся матрицы ортогональны:
что обеспечивает возможность ортогонального разложения :
Согласно нашим предположениям имеет ранг , и, следовательно, и имеют ранг и соответственно. Тогда для разложения (2) :
Далее получаем
и
Равенства в (12) и (13) получаются из (8) и (10), ссылаясь на то, что из ортогональности следует .
Это значит что полученная нами матрица содержит всю информацию и только ее, входящую в , и при этом свободна от коллинеарности, связанной с остальными собственными векторами.
Соответственно содержит только информацию связанную с коллинеарностью.
Она порождает дополнительное пространство .
Это пространство, связанное с элементами матрицы близкими к нулю, называется квази-нулевым пространством.
Получение выражения для ковариации параметров модели
Следовательно, предложенное разложение выделяет , часть , содержащую основных компонентов, которые в меньшей степени коллинеарны.
же содержит информацию связанную с компонентами которые участвуют в коллинеарных зависимостях. Переменные, входящие в коллинеарности, это те, которые имеют наибольшие координаты в столбцах матрицы .
Вектор минимизирует ошибку методом наименьших квадратов:
где -- псевдообратная матрица . Последнее равенство выполняется только если имеет полный ранг. Используя предыдущее разложение может быть показано что:
Последнее равенство использует то, что
-- сингулярное разложение и, следовательно, . Для аналогично.
Подставляя (15) и (7) в (14) получаем выражение для параметров модели:
Окончательно модель:
Здесь -- вектор регрессионных остатков.
Из (15) получаем выражение для ковариации параметров модели:
Элементы на главной диагонали это VIF, которые могут быть разложены на компоненты, соответствующие каждому и
Выявление мультиколлинеарности
Мы будем исследовать мультиколлинеарность, использую собственные значения признаков. Мультиколлинеарность влечет близость к нулю одного или более собственных значений, а соответствующие им собственные вектора содержат информацию о зависимостях между признаками.
Предложенное разложение помогает выявить переменные, которые показывают наибольшую вовлеченность в зависимости.
Из (16) получаем:
где и .
Значения и зависят от элементов и , и от соотношений , определяющих соотношения между признаками.
Значения всегда больше нуля (мы считаем что ранг равен ), тогда как принимает значения от -1 до 1.
Отрицательные значения могут привести к тому, что и будут разных знаков.
При этом один из параметров может иметь абсолютное значение больше .
Для собственных векторов, соответствующих очень маленьким собственным значениям, верно, что большие абсолютные значения означают вовлеченность соответствующих переменных в мультиколлинеарность.
Если несколько собственных значений близки к нулю, то мы можем пересмотреть понятие близости к нулю. Тем самым, мы увеличим порядок .
Это обычно приводит к уменьшению абсолютных значений и увеличению .
Если соответствует числу индексов обусловленности, существование зависимостей может рассматриваться как общие значения параметров метода наименьших квадратов.
Это позволяет избежать случая несоответствия знака параметра экспертной модели.
С помощью разложения мы можем получить нужный знак , в то же время часть значений параметров будет иметь противоположный знак и большее абсолютное значение.
Чтобы лучше исследовать влияние коллинеарности на параметры линейной регрессии, ковариационная матрица может быть переписана как:
и
Отклонение каждого может быть выражено как
Из (18) мы можем разделить отклонение:
Так как сингулярные значения близки к нулю,то если соответствующие не очень малы, второй член будет больше первого, так как отклонение будет больше чем .
Тогда по мере увеличения размерности квази-нуль пространства, мы можем ожидать, что переменные, которые более активно участвовуют в коллинеарных отношениях, связанных с собственными векторами принадлежащими этому пространству должны будут уменьшать значения и увеличивать .
Смотри также
Литература
- Gianfranco Galmacci, Collinearity Detection in Linear Regression. Computational Economics 9:215-227, 1996.