Метод Белсли
Материал из MachineLearning.
м (→Выявление мультиколлинеарности) |
м (→Выявление мультиколлинеарности) |
||
Строка 77: | Строка 77: | ||
и<br/> | и<br/> | ||
<tex> Cov({\beta}_{Ni})={\sigma}^2 \left( \begin{array}{ccc} \sum^{p}_{l=s+1} { \frac{{\upsilon}_{1l}^2}{d_l^2}} & \sum^{p}_{l=s+1} { \frac{{\upsilon}_{1l} {\upsilon}_{2l}}{d_l^2}} & \cdots & \sum^{p}_{l=s+1} { \frac{{\upsilon}_{1l} {\upsilon}_{pl}}{d_l^2}}\\ \sum^{p}_{l=s+1} { \frac{{\upsilon}_{2l} {\upsilon}_{1l}}{d_l^2}} & \sum^{p}_{l=s+1} { \frac{{\upsilon}_{2l}^2}{d_l^2}} & \cdots & \sum^{p}_{l=s+1}{ \frac{{\upsilon}_{2l} {\upsilon}_{pl}}{d_l^2}} \\ \cdots & \cdots & \cdots & \cdots \\ \sum^{p}_{l=s+1} { \frac{{\upsilon}_{pl} {\upsilon}_{1l}}{d_l^2}} & \sum^{p}_{l=s+1}{ \frac{{\upsilon}_{pl} {\upsilon}_{2l}}{d_l^2}} & \cdots & \sum^{p}_{l=s+1} { \frac{{\upsilon}_{pl}^2}{d_l^2}} \\ \end{array} \right) </tex> <br/> | <tex> Cov({\beta}_{Ni})={\sigma}^2 \left( \begin{array}{ccc} \sum^{p}_{l=s+1} { \frac{{\upsilon}_{1l}^2}{d_l^2}} & \sum^{p}_{l=s+1} { \frac{{\upsilon}_{1l} {\upsilon}_{2l}}{d_l^2}} & \cdots & \sum^{p}_{l=s+1} { \frac{{\upsilon}_{1l} {\upsilon}_{pl}}{d_l^2}}\\ \sum^{p}_{l=s+1} { \frac{{\upsilon}_{2l} {\upsilon}_{1l}}{d_l^2}} & \sum^{p}_{l=s+1} { \frac{{\upsilon}_{2l}^2}{d_l^2}} & \cdots & \sum^{p}_{l=s+1}{ \frac{{\upsilon}_{2l} {\upsilon}_{pl}}{d_l^2}} \\ \cdots & \cdots & \cdots & \cdots \\ \sum^{p}_{l=s+1} { \frac{{\upsilon}_{pl} {\upsilon}_{1l}}{d_l^2}} & \sum^{p}_{l=s+1}{ \frac{{\upsilon}_{pl} {\upsilon}_{2l}}{d_l^2}} & \cdots & \sum^{p}_{l=s+1} { \frac{{\upsilon}_{pl}^2}{d_l^2}} \\ \end{array} \right) </tex> <br/> | ||
+ | Отклонение каждого <tex>{\beta}_{i}</tex> может быть выражено как<br/> | ||
+ | <tex>Var({\beta}_{i})= {\sigma}^2 \sum^{p}_{j=1} { \frac{{\upsilon}_{ij}^2}{d_j^2}}</tex> (22)<br/> | ||
+ | Из (18) мы можем разделить отклонение:<br/> | ||
+ | <tex>Var({\beta}_{i})=Var({\beta}_{Si})+Var({\beta}_{Ni})= {\sigma}^2 [{VIF}_{Si} +{VIF}_{Ni}]= {\sigma}^2 \sum^{s}_{j=1} { \frac{{\upsilon}_{ij}^2}{d_j^2}}+ {\sigma}^2 \sum^{p}_{j=s+1} { \frac{{\upsilon}_{ij}^2}{d_j^2}}</tex><br/> | ||
== Смотри также == | == Смотри также == |
Версия 23:20, 28 июня 2010
Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Содержание[убрать] |
Разложение линейной модели
Линейная регрессионная модель:
(1)
где - n-мерный ветор ответа(зависимой переменной),
- n x p (n>p) матрица признаков
- p-мерный вектор неизвестных коэффициентов,
- p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей
, где
это n x n единичная матрица, а
. Будем считать что
имеет ранг p.
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения
определяется как:
(2)
Где - n x p ортогональная матрица,
- p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями
,
- p x p ортогональная матрица, чьи колонки это собственные вектора
. Если существует коллинеарная зависимоть, то
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.
Предположим, что
, или просто
, элементы матрицы
упорядочены так, что
И рассмотрим разбиение
где
и
диогональные, и недиогональнык блоки нулевые.
, или просто
, содержит достаточно большие сингулярные значения, а
, или
, содержит близкие к нулю.
Теперь разделим
и
соответственно:
где и
соответствуют первым s наибольших сингулярных значений, а
и
содержат
веторов соответствующих малым сингулярным значениям.
Матрица
ортогональна, т.е
, так же как и
и
. Таким образом :
Т.к тоже ортогональна, то
Таким образом разложение нам дает:
Обозначим слагаемые в правой части как
(8)
Заметим что получившиеся матрицы ортогональны, т.е :
(9)
что обеспечивает возможность ортогонального разложения :
(10)
Здесь все матрицы имеют размер и полагая что
имеет ранг p,
и
имеють ранг s и (p-s) соответственно. Тогда для разложения (2) :
(11)
Далее мы получаем
(12)
и
(13)
Равенства в (12) и (13) получаются из (8) и (10) ссылаясь на то что из ортогональности следует
. Это значит что
содержит всю информацию, и только ее, входящую в
которая свободна от коллинеарности связанной с остальными (p-s) собственными векторами.
Соответственно содержит только информацию связанную с коллинеарностью делая прогноз на дополнительное пространство
. Это пространство связанное с элементами матрицы
близкими к 0 называется квази-нулевым пространством
Следовательно предложенное разложение подчеркивает как часть
полученную из s основных компонентов которые в меньшей степени участвуют в коллинеарности.
же содержит информацию связанную с p-s компонентами которые участвую в коллинеарных зависимостях. Переменные, входящие в коллинеарности, это те, которые имеют наибольшие координаты в столбцах матрицы
.
Вектор
минимизирующего ошибку в метода наименьших квадратов:
где - псевдообратная матрица
и последнее равенство выполняется только если
имеет полный ранг. Используя предыдущее разложение может быть показано что:
Последнее равенство получается из того что
- сингулярное разложение
и следовательно
. Для
аналогично.
Подставляя (15) и (7) в (14) получаем:
Окончательно модель:
Где это вектор остатков.
Из (15) получаем:
Элементы на главной диогонали это VIF, которые могут быть разложены на компоненты соответствующие каждому
и
Выявление мультиколлинеарности
Когда есть мультиколлинеарность одино или более собственных значений близко к нулю, и соответствующие им собственные вектора содержат информацию о зависимостях между признаками. Выведеное разложение помогает выявить какие переменные показывают наибольшую вовлеченность в зависимости.
Из (16) получаем:
где и
. Значения
и
зависят от элементов
и
, и от соотношений
которые играют основную роль в объяснении соотношений между признаками.
всегда больше нуля(мы считаем что ранг
равен p), тогда как
принимает значения от -1 до 1. Отрицательные значения
могут вести к
и
разных знаков, и один из них может иметь абсолютное значение больше
. Что касается собственных векторов соответствующих очень малым значениям собственных значений, то известно, что
с большими абсолютными значениями озночают что соответствующие переменные сильно вовлечены в мультиколлинеарность. Если несколько собственных значений близки к нулю, то мы можем увеличить порядок (p-s)
по шагам используя разложение (7) и обычно мы будем наблюдать уменьшение абсолютных значений
и увеличение
. Когда (p-s) соответствует числу индексов обусловленности показывающих существование зависимостей
может рассматриваться как общие значения параметров метода наименьших квадратов. Это актуально, когда знак какого-либо параметра не является таким как ожидалось, и в целом это зависит от мультиколлинеарности.С помощью разложения, как уже отмечалось, мы можем получить что
будет иметь нужный знак, в то время как часть значения перешедшего
(благодаря коллинеарности) будет иметь противоположный знак и большее абсолютное значение.
Чтобы исследовать влияние коллинеарности на параметры линейной регрессии лучше, ковариационная матрица может быть переписана:
и
Отклонение каждого может быть выражено как
(22)
Из (18) мы можем разделить отклонение: