Метод Белсли

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Анализ коллинеарности)
м (Анализ коллинеарности)
Строка 27: Строка 27:
<tex>U^{T}_{S} U_{N}=O_{s \times (p-s)}</tex> <br/> <br/>
<tex>U^{T}_{S} U_{N}=O_{s \times (p-s)}</tex> <br/> <br/>
<tex>U^{T}_{N} U_{S}=O_{(p-s) \times s}</tex> <br/><br/>
<tex>U^{T}_{N} U_{S}=O_{(p-s) \times s}</tex> <br/><br/>
 +
Т.к V тоже ортогональна, то <br/>
 +
<tex>V^{T}_{S} V_{S}=I_{s \times s}</tex> <br/><br/>
 +
<tex>V^{T}_{N} V_{N}=I_{(p-s) \times (p-s)}</tex> <br/> <br/>
 +
<tex>V^{T}_{S} V_{N}=O_{s \times (p-s)}</tex> <br/> <br/>
 +
<tex>V^{T}_{N} V_{S}=O_{(p-s) \times s}</tex> <br/><br/>
==Анализ полученных данных==
==Анализ полученных данных==

Версия 17:15, 28 июня 2010

Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).

Содержание

[убрать]

Анализ коллинеарности

Линейная регрессионная модель:
y=X \beta + \varepsilon
где y - n-мерный ветор ответа(зависимой переменной), X - n x p (n>p) матрица признаков \beta - p-мерный вектор неизвестных коэффициентов, \varepsilon - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей {\sigma}^2 I, где I это n x n единичная матрица, а {\sigma}^2>0. Будем считать что X имеет ранг p. Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения X определяется как:
X=UDV^T
Где U - n x p ортогональная матрица, D - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями X, V - p x p ортогональная матрица, чьи колонки это собственные вектора X^T X. Если существует коллинеарная зависимоть, то будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю. Предположим, что d_{jj}, или просто d_{j}, элементы матрицы D упорядочены так, что
d_{1} \geq d_{2} \geq ...\geq d_{s} \geq ... \geq  d_{p} \geq 0
И рассмотрим разбиение

D=\begin{bmatrix} D_{s\times s} & O_{s \times (p-s)} \\ O_{(p-s) \times s} & D_{(p-s)\times (p-s)} \end{bmatrix},
где D_{s\times s} и D_{(p-s)\times (p-s)} диогональные, и недиогональнык блоки нулевые. D_{s\times s}, или просто D_{S}, содержит достаточно большие сингулярные значения, а D_{(p-s)\times (p-s)}, или D_{N}, содержит близкие к нулю. Теперь разделим U и V соответственно:

U=(U_{n\times s}  U_{n \times (p-s)}) = (U_{S} U_{N})

V=(U_{p\times s}  V_{p \times (p-s)}) = (V_{S} V_{N}),
где U_{S} и V_{S} соответствуют первым s наибольших сингулярных значений, а U_{N} и V_{N} содержат (p-s) веторов соответствующих малым сингулярным значениям. Матрица U ортогональна, т.е U^T U=I_{p \times p}, так же как и U_{S} и U_{N}. Таким образом :
U^{T}_{S} U_{S}=I_{s \times s}

U^{T}_{N} U_{N}=I_{(p-s) \times (p-s)}

U^{T}_{S} U_{N}=O_{s \times (p-s)}

U^{T}_{N} U_{S}=O_{(p-s) \times s}

Т.к V тоже ортогональна, то
V^{T}_{S} V_{S}=I_{s \times s}

V^{T}_{N} V_{N}=I_{(p-s) \times (p-s)}

V^{T}_{S} V_{N}=O_{s \times (p-s)}

V^{T}_{N} V_{S}=O_{(p-s) \times s}

Анализ полученных данных

Смотри также

Литература

Личные инструменты