Формула Надарая-Ватсона
Материал из MachineLearning.
Строка 9: | Строка 9: | ||
<tex>Q(\alpha;X^l) = \sum_{i=1}^l \omega_i(x)(\alpha-y_i)^2 \rightarrow \underset{\alpha \in \mathbb{R}}{min}</tex>, где <tex>\omega_i</tex> - это вес i-ого объекта. <br /> | <tex>Q(\alpha;X^l) = \sum_{i=1}^l \omega_i(x)(\alpha-y_i)^2 \rightarrow \underset{\alpha \in \mathbb{R}}{min}</tex>, где <tex>\omega_i</tex> - это вес i-ого объекта. <br /> | ||
Веса <tex>\omega_i</tex> разумно задать так, чтобы они убывали по мере увеличения расстояния <tex>\rho(x,x_i)</tex>. Для этого можно ввести невозрастающую, гладкую, ограниченную функцию <tex>K:[0, \infty) \rightarrow [0, \infty)</tex>, называемую [[ядром]], и представить <tex>\omega_i</tex> в следующем виде : <br /> | Веса <tex>\omega_i</tex> разумно задать так, чтобы они убывали по мере увеличения расстояния <tex>\rho(x,x_i)</tex>. Для этого можно ввести невозрастающую, гладкую, ограниченную функцию <tex>K:[0, \infty) \rightarrow [0, \infty)</tex>, называемую [[ядром]], и представить <tex>\omega_i</tex> в следующем виде : <br /> | ||
- | <tex>\omega_i(x) = K\left(\frac{\rho(x,x_i)}{h} \right )</tex>, где <tex>h</tex> | + | <tex>\omega_i(x) = K\left(\frac{\rho(x,x_i)}{h} \right )</tex>, где <tex>h</tex> — ширина окна. <br /> |
Приравняв нулю производную <tex>\frac{\partial Q}{\partial \alpha} = 0</tex>, и, выразив <tex>\alpha</tex>,получаем '''формулу Надарая-Ватсона''' : | Приравняв нулю производную <tex>\frac{\partial Q}{\partial \alpha} = 0</tex>, и, выразив <tex>\alpha</tex>,получаем '''формулу Надарая-Ватсона''' : | ||
<tex>$a_h(x;X^l) = \frac{\sum_{i=1}^{l} y_i\omega_i(x)}{\sum_{i=1}^{l} \omega_i(x)} = \frac{\sum_{i=1}^{l} y_iK\left(\frac{\rho(x,x_i)}{h} \right )}{\sum_{i=1}^{l} K\left(\frac{\rho(x,x_i)}{h} \right )}$</tex> | <tex>$a_h(x;X^l) = \frac{\sum_{i=1}^{l} y_i\omega_i(x)}{\sum_{i=1}^{l} \omega_i(x)} = \frac{\sum_{i=1}^{l} y_iK\left(\frac{\rho(x,x_i)}{h} \right )}{\sum_{i=1}^{l} K\left(\frac{\rho(x,x_i)}{h} \right )}$</tex> |
Версия 12:43, 6 января 2010
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Формула Надарая-Ватсона используется для решения задачи непараметрического восстановления регрессии.
Содержание[убрать] |
Постановка задачи
Пусть задано пространство объектов и множество возможных ответов
. Существует неизвестная зависимость
, значения которой известны только на объектах обучающией выборки
. Требуется построить алгоритм
, аппроксимирующий неизвестную зависимость
. Предполагается, что на множестве
задана метрика
.
Формула Надарая-Ватсона
Для вычисления при
, воспользуемся методом наименьших квадратов:
, где
- это вес i-ого объекта.
Веса разумно задать так, чтобы они убывали по мере увеличения расстояния
. Для этого можно ввести невозрастающую, гладкую, ограниченную функцию
, называемую ядром, и представить
в следующем виде :
, где
— ширина окна.
Приравняв нулю производную , и, выразив
,получаем формулу Надарая-Ватсона :
Обоснование формулы
Строгим обоснованием формулы служит следующая теорема :
Теорема Пусть выполнены условия :
1) выборка получена случайно и независимо из распределения
2) ядро удовлетворяет ограничениям
и
3) восстанавливаемая зависимость, определяемая плотностью , удавлетворяет при любом
ограничению
4) последовательность такова, что
и
Тогда имеет место сходимость по вероятности : в любой точке
, в которой
и
непрерывны и
.
Литература
1) К. В. Воронцов, Лекции по алгоритмам восстановления регрессии, 2009
2) Хардле В. Прикладная непараметрическая регрессия. - М.: Мир, 1993.