Экспериментальное исследование степени коалиционной манипулируемости процедур агрегирования для случая большого числа участников

Автор: Иванов А.

Руководитель: Алескеров Ф.Т., д.т.н.

Коалиционное манипулирование (пример)

Правило относительного большинства

#агентов	4	3	2
1-й место	а	b	С
2-е место	b	С	b
3-е место	С	а	а

Выбор: {а}

#агентов	4	3	2
1-st place	а	b	<u>b</u>
2-nd place	b	С	<u>c</u>
3-rd place	С	a	а

Выбор: {b}

Цель исследования

Проблема манипулирования: участник или группа участников предъявляют неискренние предпочтения, чтобы достичь лучшего для себя исхода голосования

Любая недиктаторская процедура агрегирования манипулируема (Гиббард (1973), Саттэртуэйт (1975))

Индивидуальное манипулирование: Нитцан (1985), Келли (1993), Алескеров, Курбанов (1999), Фавардин, Лепеллей (2006), Притчард, Уилсон (2007), Алескеров и др. (2011, 2012)

Цель: найти наименее коалиционно манипулируемую процедуру агрегирования из 27 рассматриваемых

Процедуры агрегирования

Участник 1	Участник 2	Участник 3	Участник 4	Участник 5	Участник 6
a	a	а	d	d	b
b	d	С	b	b	С
С	С	d	С	С	d
d	b	b	a	a	a

1.	Правило относительного большинства		$C(P)=\{a\}$
2.	Одобряющее голосование q=2		$C(P)=\{b\}$
3.	Обратное правило относительного большинства		$C(P)=\{c\}$
4.	Процедура Хара		$C(P)=\{a,d\}$
5.	Правило Борда	r(a)=r(b)=9, r(c)=8, r(d)=10	$C(P)=\{d\}$
6.	Процедура Нансона	а	$C(P)=\{a,d\}$

. .

В исследовании рассматривается 27 процедур агрегирования

Индекс манипулируемости

- Коалиция состоит из участников с одинаковыми предпочтениями
- 2. Все участники коалиции предъявляют одинаковые неискренние предпочтения

$$NK_{k=l} = \frac{d_l}{(m!)^n}$$

где l — максимальный размер коалиции d_l - количество профилей, где коалиция из l или менее участников может манипулировать

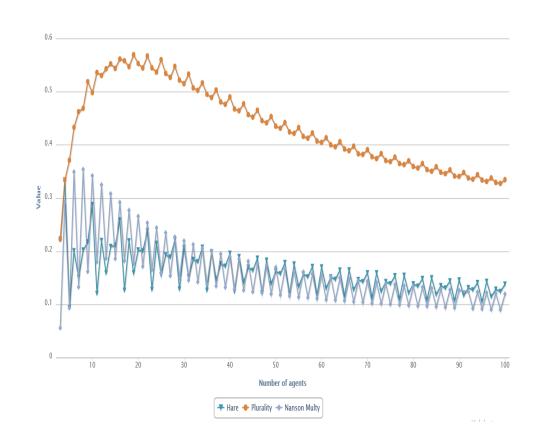
Схема оценки манипулируемости

- 1. Для m=3..4 (количество альтернатив)
- 2. Для n=3..100 (количество участников)
- 3. Для k=1..n (ограничение на размер коалиции)
- 4. Генерируется 1,000,000 профилей (для 0.001 ширины 95% доверительного интервала для NK)

Для каждого профиля:

- Генерируются все возможные коалиции и попытки манипулирования
- Проверка профиля на манипулируемость. Если да, то d_I увеличивается на 1
- 5. Расчет индекса NK
- $6.3*10^{43}$ операций потребуется для подхода «в лоб»

Компьютерное моделирование 8,200 строк кода на С# Реализовано более 10 оптимизаций и эвристик.


Реализовано разбиение задач на пакеты.

m = 3..4 альтернативы n = 3..100 участников m=4, n=100: 467 часов на 1 компьютере

Вычисления проводились на 5 компьютерах в ИПУ РАН

Результаты

- 1. Не выявлено 1 наименее коалиционно манипулируемой процедуры агрегирования из 27 рассмотренных
- 2. В разных случаях наименее манипулируемыми являются процедуры Хара и Нансона, 2- и 3-устойчивые множества, Непокрытое множество II
- 3. Для большинства случаев наименее манипулируемые процедуры Хара и Нансона (NK от 0.2 до 0.4)
- 4. Правило относительного большинства одно из худших по манипулируемости (NK от 0.4 до 0.8)

Спасибо за внимание!