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Abstract

The paper describes a method for fully automatic 3D-recoosbn

of mouse brain voxel model from a sequence of coronal 2D sslice
for statistical analysis of gene expression. Two imagesofidrain
slice with different stains are used. The first stain higftsghe his-
tology of brain, which is used for slice matching. The secstain
highlights the level of gene expression. The algorithm peals as
follows. First, images are preprocessed to suppress inzge and
equalize image brightness. Second we estimate the levedraf g
expression in each slice using the second stain. Then wéraons
3D-model of the brain using the first stain. To do this all iragre
aligned via rigid-body transformations. After alignmemtighbor-
ing slices are matched by estimation of non-linear defoonat
As the distance between slices is significantly larger tmeage
resolution we add intermediate virtual slices using margtalgo-
rithm. Gene expression level is interpolated in identicaywThe
obtained 3D-model with the information about gene expoessan
be used for gene expression analysis via Statistical Pararivkap-
ping (SPM) package. The proposed method for 3D-recongtruct
has been tested on images from Allen Brain Atlas, which id-ava
able in electronic form.

Keywords:  3D-Reconstruction, neuroimaging, image transfor-
mations, morphing, elastic deformations, image registration, B-
splines.

1. INTRODUCTION

The problem of gene expression analysis using only imagesaof
slices is very important in modern brain research [1]. Nbiglo-
gists are now able to measure the activity of selected geee-in
ery brain cell. This is usually done in vitro, i.e. on deadcdies.
The extracted brain is frozen and then cut into slices. Ehch is
double-stained by Nissl method to highlight histology agdspe-
cial stain which reveals the neurons with expression ofespond-
ing genes.

The further automatic analysis of gene expression is sggmifly
more complicated problem, compared to analysis of braiiv-act
ity, measured by other neuroimaging techniques, like fMIRPBT.
For fMRI data a well-known Statistical Parametric MappisdgM)
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framework is widely used[2]. SPM uses 3D voxel model as in-
put data and provides tools for model reconstruction frorresef
slice images. However, SPM package cannot be directlyegfibr
gene analysis problem. First, due to technological aspédigain
cutting procedure brain slices differ in their actual sizkape and
orientation, and SPM fails to correctly reconstruct modafrf such
kind of data. Second, statistical analysis in SPM packaliesren
spatial coherency of brain activity, which is the reason \thyses
uniform voxel models. fMRI data is acquired in fairly low es
lution (128*128 or 256*256 images are a common case) and it is
easy to acquire similar number of fMRI images to ensure thaél
model has same resolution in all dimensions. But for geneesxp
sion analysis image resolution should be significantly éigland

it is impossible to obtain corresponding number of slicesfiany
technological reasons. Thus it is necessary to reconsirgrime-
diate layers from existing slices.

In this paper we propose a novel method for voxel model recon-
struction from the set of brain slice images that allowsHertanal-
ysis by SPM package. Our method is fully automatic and ctssfs
following steps. First, images are preprocessed to suppmesge
noise and equalize image brightness. Then all images ayeeali
via rigid-body transformations. Consecutive slices aréched by
estimation of non-linear deformations between layer®rinediate
layers are then interpolated using estimated non-lineasforma-
tions. Finally, data is converted to the voxel models anc:dan

the NIFTI-1 file format [3] that is standard for the brain sesl

We have tested our method 3D-reconstruction on images from
Allen Brain Atlas [4] and showed that it leads to comparalade r
sults with the ones in AGEA project where 5 times more sliges a
used for 3D-reconstruction.

The rest of paper is organized as follows. In section 2 weridesc
the preprocessing of brain slice images with histologicel gene
expression stains. Section 3 describes how gene exprdssiin
is computed. In section 4 image alignment and intra-sliterpo-
lation method is described. Section 5 contains some expetih
results. Some conclusions are given in the last section.

2. BRAIN SEGMENTATION AND ILLUMINATION
CORRECTION

On experimental images of mouse brain slices noise levetiig v
high due to uneven amount of stain in different part of theesli
This results in abrupt deformations of brain slice contdat tde-



grade alignment and matching. To suppress such defectsple ap
segmentation algorithm based on graph cuts with prior agsans
on slice shape. [5, 6, 7].

Uneven illumination of brain images is also a problem. Fdfedi

ent brain images contrast is different and even within opaiste
image there are areas with different illumination levelsr #umi-

nation correction we apply Single Scale Retinex method F&st,
Gauss filter with large radius is applied to the image:
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We useds = 20, R = 100. This operation gives an illumination
map of the imag€ .

Afterwards the initial image is divided by obtained filtefiethge
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This operation provides both equal local illumination witleach
image and equal illumination of different atlas images.

Figure 1 and figure 2 illustrate this procedure.

Figurel: Histological brain image after Graph Cut algorithm with-
out illumination correction.

Figure 2: Histological brain image after illumination correction.

3. EXPRESSION DETECTION AND EVALUATION

To measure the gene expression in stained brain slice igeansa
acquired with very high resolution so that each stainedeuscis

visible. But such high resolution make further processimg @anal-
ysis computationally impractical and it should be reduc®tdaight-
forward resolution decrease will smooth image and intredercors

in gene expression measurement. So we need a specific precedu
for rescaling of such images.

For this purpose an expression level is evaluated for eaclygeém
zone that corresponds to one pixel after the resolutionatéstu
First we evaluate the expression level for each pixel of ttiigal
image, then apply a standard Gauss filter with radius clogketo
new pixel size (this also leads to smoothing required forsthiese-
guent statistical analysis), and finally evaluate the esgiom level
for each new pixel by simple summation and rescaling. Naeith
following versions we plan to replace the application of &=filter
by non-uniform smoothing method that takes account of aniato
structures.

The results of expression level detection and evaluatiarbeecor-
rected manually if required by changing the default thrédshand
other parameters (globally or locally, in a certain imaggfent)
and/or by setting the expression level in certain imagetpairan-
ually. However the designed procedure of expression deteahd
evaluation is fully automated and normally the manual atioe is
not required.

The most critical part of this step is the evaluation the egpion
level for each pixel of the initial image. In current implenta-
tion the fact of expression presence in a point is not simjigy,

but is represented by a real number from 0 (no expressiond up t
1 (maximum expression level). Intermediate values repitethe
relative expression level. Such approach is natural frarbtblog-

ical viewpoint, it also leads to the correctness of the caiauens
(where correctness is understood in a standard matheireditse)
and hence eliminates the errors connected with closeréstiold
values.

The procedure of expression evaluation can be shortly ibestcr
as follows. The image is first transformed from RGB to one-
parametric color palette (in fact it is an analogue of the/greale
palette, but different coefficients can be used for the foansa-
tion). Similarly to [9] two different one-parametric colechemes
are used in order to reduce errors. For each color schemaline v
of a sigmoid function (i.e., a smooth function that equal®0dr-
guments less than the lower threshold and equals 1 for amgsme
greater than the upper threshold) is computed at each pikel:
color of the pixel in the one-parametric color palette isdias an
argument, and the parameters of the sigmoid function depand
the distance from the brain border and the mean color valtigein
large neighborhood. The expression activity at each pixskt to
the product of the values of these sigmoid functions. Fig®e4
show the simplified result of expression detection.

4. 3D MODEL CONSTRUCTION

4.1 Image alignment

In fMRI imaging the alignment transformations between iemgre
assumed to be either affine or rigid-body in 3D or 2D space. [10]
In our case slices are already horizontally centered agdedi w.r.t
symmetry line during imaging process. But cutting procedntro-
duces small deformations in vertical direction, which aiféeecent

for each slice. So we limit the set of alignment transformsdxgi-

cal shifts and stretches.

Image alignment proceeds as follows. First, we search fer th
smallest surrounding rectangle of each slice. Then we dengéct-
angle border to be a function of slice number. Figure 5 showme
ple of top and bottom borders of brain rectangles withogtretient.
These functions are not smooth enough for 3D reconstrucfion
smooth these functions we apply Savitzky-Golay filter.



Figure 3: Initial image of a brain region.

Figure 4: Image of the brain region where pixels with expression
level greater than threshold (0.5) are marked.

The idea of Savitzky-Golay filtering is to find filter coeffiaies that
preserve higher moments. Equivalently, the idea is to aqmeate
the underlying function within the moving window not by a eon
stant (whose estimate is the average), but by a polynomtagber
order (we used order 5 in our approach). For each point we-leas
squares fit a polynomial to the points in the moving window (we
used window width 15), and then set the new value to be thevalu
of that polynomial at the same position.

Savitzky-Golay filters can be thought of as a generalizedingov
average. Their coefficients are chosen this way to presegieih
moments in the data, thus reducing distortion of esserg&tifes
of data like peak heights and line widths in a spectrum, wthiee
suppression of random noise is improved. Figure 6 shows pbeam
of top and bottom borders of brain rectangles after alignmen

If we are interested in any specific section of mouse brain ave ¢
make additional alignment in appropriate plane. Such adigmt
makes specific section smoother but the whole model becamsss |
smooth. So in general we don't use specific plane alignment fo
3D-model reconstruction.
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Figure 5: Not aligned top (U) and bottom (D) borders of mouse

brain.
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Figure 6: Aligned top (U) and bottom (D) borders of mouse brain.

4.2 Non-linear transformations

To obtain the voxel model with uniform resolution we need to fi
the gaps between available slices by synthesizing of irgdiate
layers. For this task we estimate non-linear deformatiawéen
consecutive slices.

There exist many methods for non-linear deformation estona
parametric model of the deformation [10, 11, 12, 13], hienaral
models [14, 15], nonparametric local methods [16], inalbdg-
namic programming [17], optical flows [18]. In this paper voé f
low the papers [11, 12] and use the approach based on pam@metr
model of deformation based on B-spline basis functions.i¢ehaf
B-splines as basis functions provides good quality of deédion

and high speed of calculation because of limited number sisba
functions.

A brain 3D model is a function:

F:R?>—[0,1].

From slices we know values only at some discrete points. In slice
plane expansion of discrete function to its continuousivers a
weighted sum of surrounding discrete point colors. Expangn
other plane can be done in the same way (weighted sum of neigh-
boring slices). However, this simple solution makes a 3D ehadt
smooth enough. A better solution can be obtained using inea
image deformations.

The inputimages are given as two 2-dimensional discretetifums:
fl,fg I C Z2 — [0, 1].

Here is a 2-dimensional discrete interval covering the set of all
pixels in the image. Function values stand for intensitiesoore-
sponding pixels.

We denote continuous expansions of two imagegiags.



Our goal is to find a deformation of the first image to the second
one in the following way:

filg(z,y)) = fa(z,y).
Hereg(z,y) : R? — R? is a deformation (correspondence) func-
tion between pixels.

We measure the difference between images by SSD (sum ofshjuar
deviations) criterion:

E= Y (fi(9(i.5) = f2(i, 1)

(i,5)€T
So the problem is to minimiz& with respect to deformation func-
tion g.

We consider deformation function as a linear combinatiosamhe
basis functions:

g(z,y) =Y ebk(z,y).
keK
Here K is a set of basis function indexes.

Family of deformation functions 4.2 transforms optimiratprob-
lem in functional space into finite-dimensional optimizatiprob-
lem.

We use uniformly spaced cubic B-splines as basis functions.
A B-spline 3, of degreer is recursively defined as

ﬁr = ﬁr_l *ﬁo,’r’ > 0.
Bo is a characteristic function ¢-0.5, 0.5], * is convolution oper-
ator.
Specifically, cubic B-spline is the following function:

2/3 — (1 —|z|/2)z2,0 < |z| <1,
(2—[z)?/6,1 < || <2,
0,|z| > 2.

Bs(x)
So we are looking for the deformation function in the family:

g(x,y) =

>

(kx,ky)EK

kg ey B3(/ha — k) Ba(y/hy — Ky).

Centers of B-spline functions are placed on the regular grid
(kzha, kyhy). Working with uniform splines is significantly faster
with respect to nonuniform splines. In order to get comptetgrol
overg, we put some spline knots outside the image.

Finally the problem is to optimize SSD criterfa w.r.t. set of pa-

rameters:. Here we use gradient descent algorithm with feedback

step size adjustment. In this algorithm parameter upddeeisu
Ac = —uV E(c). After a successful stepis multiplied by some
valuepy > 1, otherwise it is divided by some other valug > 1.

An example of deformation field obtained from B-spline bésis-
tions for a pair of neighboring slices from Allen Atlas is shoin
figure 7.

Since we have deformation of the firstimage to the second e a
vice versa, we can fill gaps between atlas slices with wethbben
of deformed neighboring slices:
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Figure7: Deformation field for B-spline method. This deformation
field is obtained by applying deformation of neighboringas to
regular grid.

@ 11—«
F(x7y7z) = (1 - a)fl,k—l(x7y) + an,k (fE,y)
Herea = % zi—1 < z < zi, 21 IS a z-coordinate of slice
numberk.

Flraa(@y) = fima((@y) + algioa(z,y) — (2,1))).

ax(@y) = fi((@y) + L= a)(gr ' (z,9) — (z,9)))-

Hereg! (z,y) is a deformation function of slice numbeto slice
number;.

As a last step, the full set of input and intermediate slisesoin-
verted to voxel model and saved in the NIFTI-1 file format [3],
which is a standard for the brain studies.

5. EXPERIMENTAL RESULTS

In order to test the proposed method for 3D-model constinatie
used it on coronal Allen Brain Atlas [19, 4].

The coronal Allen Brain Atlas is a set of full-color, highsution
coronal digital images (132 images) of mouse brain accorepan
by a systematic, hierarchically organized taxonomy of redursin
structures. The Allen Brain Atlas is obtained from 8-weekl ol
C57BI/6J male mouse brain prepared as unfixed, fresh-frigen
sue.

Figure 8: Allen Brain Atlas image.
On figure 8 the left half represents histological structufermme
mouse brain slice. The right half shows color annotation otise



brain structures made by human experts. We have used lyg@alo
images to reconstruct a 3D voxel model. Afterwards we adplie
same morphing transformations to create virtual slices\nbtated
images to demonstrated that our method correctly presémeds-
ner brain structures.

Figures 9 and 10 show synthesized histological and colostated
axial slices of model built without illumination correcti@and slice
alignment. Figures 11 and 12 show synthesized histologioell
color annotated axial slices of model built with both illuration
correction and slice alignment, but without non-linearadefations
between neighboring slices.

Figures 13 and 14 show synthesized histological and snaiciyial
slices of model built with illumination correction, slicéignment
and with non-linear deformations between neighboringeslic

These figures show significant improvement of 3D model gualit

with each step. 3D model from figures 13 and 14 is much smoother

than the previous ones. It should be mentioned that not awly b
borders become smoother but also borders of internal stest

We also compared our method of virtual slices generatioh thig
analogous method used in AGEA project [20]. Figure 15 shqws a
propriate axial brain view from AGEA project. The quality\oéw,
obtained by our method, is very similar to one of AGEA project
but compared compared to full set of slices without gapsd uise
AGEA, we have used only each 5th slice.

The results of the automated gene expression detectionvahde
tion were checked by human experts and were found to beaatisf
tory.

Figure9: Axial histological view of 3D model without illumination
correction, alignment and nonlinear deformations.

6. CONCLUSION

We proposed an algorithm that constructs virtual slicesrafrb
w.r.t. arbitrary section-plane. We have shown that suchritgn
allows us to get synthetic images of relatively good quatibgh
with histological and anatomical structure. Such algonithpens
great perspectives for further brain research as it previle op-
portunity of discovering the anatomical structures in ak&rslice
of real mouse brain. The procedure of slices’ preparatiorery
time and labor consuming, that is why it is highly desiralded-
duce the number of slices obtained from real mouse to minimum
(in the limit to one which is of interest for biologists). Thkce can
be made in non-standard (coronal, sagittal, or axial) cegtlane
and it should be mapped into 3D-model of atlas brain. Our-algo

Figure 10: Axial structural view of 3D model without illumination

correction, alignment and nonlinear deformations.

Figure 11: Axial histological view of 3D model with illumination
correction and alignment.

rithm allows us to synthesize the image of an atlas brain.vany
section-plane and hence is the key part of future methodhwhiit
compute the best mapping. When it is done the anatomical-stru
tures in real brain slice can be found easily by projectirefamical
structure of atlas brain onto the virtual slice with furtiparform-
ing inverse mapping to adapt it to real brain slice. The aigor
for identifying anatomical structures in arbitrary braiits is ex-
tremely useful for brain research as it allows to understahdt
structures are responsible for specific genes expressispeicific
situations.

Note that the quality of statistical analysis (includinghsBnaly-
sis) can be significantly increased by using the knowledgritab
anatomic structures. A simple way of structural annotatbra
model brain is based on the geometric alignment of this madhl
the model that integrates histologic data and anatomiadtstral)
data. Such model was constructed based on Allen Brain Allas.
alignment can be built, e.g, using standard SPM procedoregef
ometric processing.



Figure 12: Axial structural view of 3D model with illumination Figure 14: Axial structural view of 3D model with illumination
correction and alignment. correction, alignment and nonlinear deformations.
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Figure 15: Axial histological view of 3D model of AGEA project.

Figure 13: Axial histological view of 3D model with illumination

correction, alignment and nonlinear deformations. _ ] _
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