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Goals

Goal: onstrut mathematial apparatus to selet multimodels for

solving reognition and lassi�ation tasks.

Motivation. Statistial inhomogeneity of a sample arises in

reognition and lassi�ation problems. Multimodels are used to

handle the issue. They ontain several models, for whih we aim to

determine statistial disernability.

Problem. Multimodel may ontain many similar models, whih

results in low foreast quality and lak of interpretability. Models'

feature spaes might be di�erent, in partiular they an have

di�erent dimensionality.

Method. Multidimensional statistis and bayesian inferene to

onstrut a method for statistial testing of models' disernability.

Similarity funtion is introdued and analyzed. The funtion is

de�ned for a pair of distributions possibly with di�erent supports.
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Multimodels: mixtures of models and multilevel models

De�nition 1. Mixture of models is

a regression model f =

K
∑

k=1

πkfk(wk),

where

K
∑

k=1

πk = 1, πk ≥ 0.
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De�nition 2. Multilevel regression

models is a union of regression

models fk, k = 1, . . . ,K suh that the

objets' index set is divided as follows

I = ⊔K
k=1Ik and for eah objet with

index in Ik model fk is used.
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Probabilisti model for mixture of models

Data generation hypothesis

There exists a prior distribution on vetor of models' weights

π = [π1, . . . , πK ]T ∼ q(π|α).
Models' parameters w1, . . . , wK are mutually independent

together with models' weight vetor π.

Eah objet xi is desribed by a single model ki, and random

variables k1, . . . , km orresponding to model indies are

mutually independent.

Target variables yi|ki, wki ∼ Be
(

fki(xi, wki)
)

are mutually

independent together with π.

Joint distribution for a multimodel

p(y, w1, . . . , wK , π|X) =

q(π|α)
K
∏

j=1

pj(wj)

m
∏

i=1

(

K
∑

k=1

πkfk(xi, wk)
yi
(

1− fk(xi, wk))
1−yi

)

)

.
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Multimodel optimality and adequay ondition

De�nition 3. Call a multimodel de�ned by the joint distribution

p(y, w1, . . . , wK , π|X) (s, α)-adequate, if the models

onstituting the multimodel are pairwise statistially distinguishable

with the similarity funtion s at signi�ane level α.
Denote the set of all (s, α)-adequate multimodels by Ms, α.

De�nition 4. Call a multimodel optimal, if it has the maximum

evidene [q(π|α), p1(w1), . . . , pK(wK)] = argmax
q, p1, ..., pK

p(y|X) =

argmax
q, p1, ..., pK

∫

p(y, w1, . . . , wK , π|X)dw1 . . . dwKdπ.

Maximum a posteriori probability estimate for models'

parameters and multimodel's weights

[π, w1, . . . , wK ] = argmax
π,w1, ...,wK

p(π, w1, . . . , wK |X, y).
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EM-algorithm for the mixture of logisti regression models

Joint distribution for the mixture of models

Introdue hidden variables {zik ∈ {0, 1}} where zik = 1 means that

an objet (xi, yi) belongs to model k.

p(y, Z, π, w1, . . . , wK |X, A1, . . . , AK) =
K
∏

k=1

pk(wk|0, A−1

k )

Γ(Kα)

ΓK(α)

K
∏

k=1

πα−1

k

m
∏

i=1

K
∏

k=1

{πkf(xi, wk)
yi(1− f(xi, wk))

1−yi}zik .

E-step

γik = Ezik = πkf(xi, wk)
yi(1− f(xi, wk))

1−yi/Ni.

M-step

At the M-step models' weights π and vetors of models' parameters

w1, . . . , wK are de�ned.

πk = max (0, γk + α− 1) /Zk, ãäå γk =
m
∑

i=1

γik
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M-step

l̃(w1, . . . ,wK , π|X, y) =

−
K
∑

k=1

(γk + α− 1) log πk +

K
∑

k=1

l̃k(wk|X, y, Ak).

∂l̃k
∂wk

= XTΓk(f − y) +Akwk, Hk = X
T

RkX+Ak,

Rk = diag(γikf(x
T

i wk)f(−xT

i wk)).

Properties of the optimized funtion

l̃k(y, wk|X, Ak, Γk) with �xed objets' weights Γk is the logarithm

of joint distribution for a standard logisti regression model with

weighted objets.

Suggested features' seletion method

Ak = argmax
A∈M

p̃(y|X,A, Γk), ãäå

p̃(y|X, A, Γk) =

∫

l̃k(y, wk|X, A, Γk)dwk.
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Features' seletion using maximum evidene priniple
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Òheorem 1 (Aduenko, 2016)

Ïóñòü n = 2, k = 1, w = [w1, w2], w1, w2 6= 0. Denote by

Σ = X
T

RX =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

, A =

(

s21 κs1s2
κs1s2 s22

)

.

If m → ∞ and

σ2
1 , σ

2
2

P→ ∞,

∃ c > 0 : P(1− ρ2 ≥ c) → 1,

then s∗1, s
∗
2

P→ ∞, κ∗
P→ −sign(w1w2).
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Model omparison problem statement

Issue

Despite the spari�ation of a multimodel, it an still be not

(s, α) � adequate, i.e. an ontain similar models.

Input

Two models f1 and f2 with vetors of parameters w1 and w2.

Samples (X1, y1) and (X2, y2),
y1,i = f1(x1,i, w1), y2,i = f2(x2,i, w2).

Prior distributions on models' parameters

w1 ∼ p1(w), w2 ∼ p2(w).

Posterior distributions on models' parameters p(w1|X1, y1)
and p(w2|X2, y2) denoted further by g1(w) and g2(w).

Goal: to onstrut a similarity funtion de�ned on a pair of

distributions g1(w) and g2(w). It must satisfy several requirements.
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Requirements for similarity funtion s

Similarity funtion s must

1 be de�ned in ase distributions' supports are di�erent,

2 satisfy s(g1, g2) ≤ s(g1, g1),

3 satisfy s ∈ [0, 1],

4 satisfy s(g1, g1) = 1,

5 be lose to 1, if g2(w) is non-informative distribution,

6 be symmetri, i.e. s(g1, g2) = s(g2, g1).

Òheorem 2 (Aduenko, 2014)

Kullbak-Leibler divergene, Jensen-Shannon, Hellinger and

Bhattaharyya distanes do not meet the requirements for the

similarity funtion.
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Illustration of the requirements for similarity funtion

It is important that the value of s

is lose to 1 if g2(w) is non-informative distribution.
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g1(w) = N (0, 0.12)
g2(w) = U [−3, −2.7]
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Theorem 2 (Aduenko, 2014)

Kullbak-Leibler divergene, Jensen-Shannon, Hellinger and

Bhattaharyya distanes do not meet the requirements for the

similarity funtion.
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Kullbak-Leibler divergene and Jensen-Shannon distane

Cases 1, 2

Kullbak-Leibler divergene and Jensen-Shannon distane

DKL(g1, g2) =

∫

g1(w) log
g1(w)

g2(w)
dw

DJS(g1, g2) =
1

2
DKL(g1,

1

2
(g1 + g2)) +

1

2
DKL(g2,

1

2
(g1 + g2)) do

not meet the requirement for similarity funtion.

Proof

1 DKL = ∞ if g1(x) 6= 0, g2(x) = 0 on a set of positive

measure with respet to g1.

2 DKL(g1, g2) 6= DKL(g2, g1).

3 DKL → ∞ for a pair of normal distributions N (0, 1) and
N (0, σ2) when σ2 → ∞.

4 DJS 6→ 0 for a pair of normal distributions N (0, 1) and
N (0, σ2) when σ2 → ∞.

12 / 23



Hellinger and Bhattaharyya distanes

Cases 3, 4

Hellinger and Bhattaharyya distanes

DH(g1, g2) = 1−
∫

√

g1(w)g2(w)dw,

DB(g1, g2) = − log

∫

√

g1(w)g2(w)dw do not meet the

requirement for similarity funtion.

Proof

Both distanes do not have the desired property for non-informative

distributions

DH(g1, g2) → 1, DB(g1, g2) → ∞.
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Suggested similarity funtion

The s-sore funtion is suggested to measure the similarity

s(g1, g2) =

∫

w
g1(w)g2(w)dw

maxb
∫

w
g1(w − b)g2(w)dw

.

Theorem 3 (Aduenko, 2014). Suggested similarity funtion meets

all the requirements for the similarity funtion.

Examples:

g1(w) g2(w) s(g1, g2)

U [0, 1] U [0.5, 1.5] 0.5

U [0, 1] U [0., 1.] 1

N (0, 1) N (10, 1010) 1
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Expression for s(g1, g2) for a pair of normal distributions

Theorem 4 (Aduenko, 2014).

Let g1 = N (v1, Σ1), g2 = N (v2, Σ2). Then for s(g1, g2) obtain

s(g1, g2) =

exp
[

1

2
(Σ−1

1
v1 +Σ−1

2
v2)

T

(Σ−1
1

+Σ−1
2

)−1(Σ−1
1

v1 +Σ−1
2

v2) −

−1

2
v
T

1Σ
−1
1

v1 − 1

2
v
T

2Σ
−1
2

v2

]

.

Corollary 1. In ase Σ2 = 0 for s-sore obtain

s(g1, g2) = exp
[

−1

2
(v2 − v1)

T

Σ−1
1

(v2 − v1)
]

.

Corollary 2 (s-sore expression simpli�ation).

For a pair of normal distribution the expression for s-sore is as

follows

s(g1, g2) = exp
(

−1

2
(v1 − v2)

T

(Σ1 +Σ2)
−1(v1 − v2)

)

.
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s-sore distribution when the ompared models oinide

Theorem 5 (Aduenko, 2014). Let

Model f1 and f2 oinide, i.e. w1 = w2 = w.

Seond model parameter values w are known, i.e. Σ2 = O.

Features' values are bounded, i.e. ∃ C : |x1ij | ≤ C.

Σ1 is positive de�nite, and λmax(Σ1)/λmin(Σ1) = O(1),
λmax(Σ1) → 0 when m1 → ∞.

Then the expression for s-sore for this two models is

s(g1, g2) = exp
[

−1/2(ŵ1 −w)
T

Σ−1
1

(ŵ1 −w)
]

,

and s ∼ exp [−1/2ξ], where ξ
d→ χ2(n) whenm1 → ∞, n is the

number of features.

Corollary 1. For the ase when n = 2 s-sore has asymptotially

uniform distribution with [0, 1] range.
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Illustration of s-sore appliation for distinguishing two

models, ρ = 0.9

Consider two models similar in terms of ‖w1 −w2‖,
‖w1‖ = ‖w2‖ = 1, corr(w1, w2) = ρ.
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P(H0|H1) dependene on orrelation between true models

parameters.

Consider two models similar in terms of ‖w1 −w2‖,
‖w1‖ = ‖w2‖ = 1, corr(w1, w2) = ρ.
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Generalization of s-sore distribution theorem for the ase of

two �nite samples

Theorem 6 (Aduenko, 2016).

If for the models f1 and f2

Models f1 and f2 oinide, i.e. w1 = w2 = w;

Features' values are bounded, i.e. ∃ C : |xkij | ≤ C, k = 1, 2;

Σ̂k is positive de�nite in some neighbourhood of w, and

λmax(Σk)/λmin(Σk) = O(1), λmax(Σk) → 0 when

mk → ∞, k = 1, 2;

‖Σ−1

1
‖‖Σ2‖ P→ 0 when m1, m2 → ∞;

Then when m1, m2 → ∞
−2 log(s(g1, g2)) = (ŵ2− ŵ1)

T

(Σ̂1+ Σ̂2)
−1(ŵ2− ŵ1)

d−→ χ2(n).
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s-sore properties for normal distributions

Theorem 7 (Aduenko, 2014). Let the models de�ned by

(v1, Σ1) and (v2, Σ2) be onsidered distinguishable if

s (N (v1, Σ1), N (v2, Σ2)) ≤ C ∈ (0, 1).

Then if the models are distinguishable aording to this riterion,

then

models de�ned by (v1, Σ1) and (v2, O) are also

distinguishable aording to this riterion,

models de�ned by (v1, Σ1) and (v2, λΣ2), λ ∈ [0, 1] are also

distinguishable aording to this riterion.
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Estimates on the number of models

Theorem 8 (Aduenko, 2014). Consider K models with

‖v1‖ = . . . = ‖vK‖ = λ1 > 0 è Σ1 = . . . = ΣK = λ2I. Let the

following riterion be used to distinguish the models: models i 6= j
are distinguishable, if

s (N (vi, Σi),N (vj , Σj)) ≤ C ∈ (0, 1).

Then the maximum number of pairwise distinguishable models in a

set is

Kmax =

⌊

√
π

nΓ(n+1

2
)

(n− 1)Γ(n
2
+ 1)

1
∫ θ/2
0

sinn−2 ϕdϕ

⌋

,

where θ ∈ [0, π], cos θ = ρ = max(−1, 1 + 2λ2/λ
2
1 lnC), n is the

features' spae dimensionality. Moreover it is feasible to onstrut

Kmin pairwise distinguishable models, where

Kmin =

⌊

√
π

nΓ(n+1

2
)

(n− 1)Γ(n
2
+ 1)

1
∫ θ
0
sinn−2 ϕdϕ

⌋

.
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Estimates on the number of models (ontinued)

Theorem 8 (ontinued). For C lose to 1 obtain

Kmax ≈









√
π

nΓ(n+1

2
)

(n− 1)Γ(n
2
+ 1)

2
n−1

2

(1− ρ)
n−1

2







 ,

Kmin ≈









√
π

nΓ(n+1

2
)

(n− 1)Γ(n
2
+ 1)

1

2
n−1

2 (1− ρ)
n−1

2
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Conlusion

The theory for seletion of (s, α) � adequate multimodels

ontaining pairwise distinguishable models was onstruted.

Similarity funtion s-sore whih enables heking for similarity

between two models was suggested. Asymptoti properties for

distributions of s(g1, g2) and log(s(g1, g2)) were proved for

generalized linear models.

The method for statistial omparison of models based on

introdued similarity funtion is suggested.

Using the introdued s-sore lower and upper bounds on the number

of pairwise distinguishable models were obtained.

Features' seletion algorithm based on maximum evidene estimate

of models' parameters' ovariane matrix is suggested.

Strutural onstraints on ovariane matrix in features' seletion

algorithm were onsidered. It was shown that the non-diagonal

max-evidene estimate of ovariane matrix is asymptotially

degenerate.
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