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Goals

Goal: construct mathematical apparatus to select multimodels for
solving recognition and classification tasks.

Motivation. Statistical inhomogeneity of a sample arises in
recognition and classification problems. Multimodels are used to
handle the issue. They contain several models, for which we aim to
determine statistical discernability.

Problem. Multimodel may contain many similar models, which
results in low forecast quality and lack of interpretability. Models'
feature spaces might be different, in particular they can have
different dimensionality.

Method. Multidimensional statistics and bayesian inference to
construct a method for statistical testing of models’ discernability.
Similarity function is introduced and analyzed. The function is
defined for a pair of distributions possibly with different supports.
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Multimodels: mixtures of models and multilevel models

Definition 1. Mixture o}? models is

a regression model f = E T fe (W),
k=1
K

where Zwk =1, m, > 0.
k=1

Definition 2. Multilevel regression
models is a union of regression
models fx, k = 1,..., K such that the
objects’ index set is divided as follows
T = UK |7, and for each object with
index in Z;, model f;. is used.
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Probabilistic model for mixture of models

Data generation hypothesis
m There exists a prior distribution on vector of models’ weights
m=[m, ..., Tx]" ~ q(7|a).
m Models’ parameters wy, ..., wg are mutually independent
together with models’ weight vector .

m Each object x; is described by a single model k;, and random
variables k1, ..., ky, corresponding to model indices are
mutually independent.

m Target variables y;|k;, wy, ~ Be(fki(xi, sz)) are mutually
independent together with r.

Joint distribution for a multimodel

p(y, Wiy o W ’TF‘X)K:
atried Lt 1] (Z e fe(oi, W) (1= fi(xi, Wk))l_yi)) :
j=1 i=1 \k=1
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Multimodel optimality and adequacy condition

Definition 3. Call a multimodel defined by the joint distribution
p(y, wi, ..., wg, w|X) (s, a)-adequate, if the models
constituting the multimodel are pairwise statistically distinguishable
with the similarity function s at significance level .

Denote the set of all (s, «)-adequate multimodels by M .
Definition 4. Call a multimodel optimal, if it has the maximum

evidence [¢(7|a), p1(W1), ..., px(WK)] = argmax p(y|X) =
4,P1, - PK

arg max /p(y, Wi, ..., Wi, ®|X)dw ...dwgdr.

4,P15 - PK

Maximum a posteriori probability estimate for models’
parameters and multimodel’s weights

[, Wi, ..., Wg] = argmax p(m, wi, ..., wg|X, y).
T, W1, ey WK
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EM-algorithm for the mixture of logistic regression models

Joint distribution for the mixture of models
Introduce hidden variables {z;; € {0, 1}} where z;;, = 1 means that

an object (x;, y;) belongs to model k.

K
p(Y7 Z7 T, Wiy o ovy WK‘Xu Alu ey AK) = Hpk(wk‘07 A]zl)
k=1
K m K
I'Ka _ ) i Zi
F(K(a)) LT 70  TTTT (wf (cir wi)¥e(1 = fF(xi, wi)) ' 74037,
k=1 =1 k=1
E-step

Vit = Bz, = T f (%, Wi)¥i (1 — f(xi, wi)) ¥ /N;.

M-step
At the M-step models’ weights 7t and vectors of models’ parameters
w1, ..., Wx are defined.

m
T, = max (0, 1, +a — 1) /Zy, roe v, = Z%’k

=1
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M-step

I(wi,...,wk, m|X, y) =

K K

- Z(’Yk +a—1)logm + Z (Wi X, y, Ag).
k=1 k=1

Ol

o = XTTu(f —y) + Apwy, Hy = X Ry X + Ay,

Wi

Ry, = diag(vik f (3] W) f (=% wy)).

Properties of the optimized function

Zk(y, wi|X, Ag, T'x) with fixed objects’ weights Ty, is the logarithm

of joint distribution for a standard logistic regression model with
weighted objects.

Suggested features’ selection method
Ak = argmaxﬁ(y|X,A, Fk’)l roe
AeM
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Features’ selection using maximum evidence principle

2 4 6 8 10 12 14 16 18 10 20
Iteration

30 40 50
Tteration

Theorem 1 (Aduenko, 2016)
Mycte n =2, k=1, w = [wy, wa], wi, wy # 0. Denote by

3 — XTRX _ 0‘% pPo102 A — 8% KS189
pPO109 o*% ' KS182 S% .
If m — oo and

IU%,agioo,
mEdc>0: P(l—pZZc)—>1,

P P .
then s7, s5 — 0o, K* — —sign(wjws).
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Model comparison problem statement

Issue
Despite the sparcification of a multimodel, it can still be not
(s,«) — adequate, i.e. can contain similar models.

Input

m Two models f1 and fo with vectors of parameters w; and wy.

m Samples (X, y1) and (X2, y2),
Yii = f1(X1,z‘, w1), Y2,i = f2(X2,z‘, w3).

m Prior distributions on models’ parameters
w1~ p1(W), wa ~ pa(w).

m Posterior distributions on models’ parameters p(w1|Xy, y1)
and p(wq|Xs, y2) denoted further by g1 (w) and go(w).

Goal: to construct a similarity function defined on a pair of

distributions g (w) and go(W). It must satisfy several requirements.
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Requirements for similarity function s

Similarity function s must

be defined in case distributions’ supports are different,
satisfy s(g1, 92) < s(g1, 91),
satisfy s € [0, 1],

satisfy s(g1, g1) = 1,
be close to 1, if go(W) is non-informative distribution,

@ be symmetric, i.e. s(g1, 92) = (92, 91)-

Theorem 2 (Aduenko, 2014)

Kullback-Leibler divergence, Jensen-Shannon, Hellinger and
Bhattacharyya distances do not meet the requirements for the
similarity function.
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lllustration of the requirements for similarity function

It is important that the value of s
is close to 1 if go(w) is non-informative distribution.

35 0.3
3 0.3
2.5 0.25
5 —gi(w) = N(0,0.1%) B
£ 2 — gy(w) = U[-3, —2.7] £ 02
1.5 0.15
1 0.1
0.5 0.05
Yo 5 5 10 -10

so

Theorem 2 (Aduenko, 2014)

Kullback-Leibler divergence, Jensen-Shannon, Hellinger and
Bhattacharyya distances do not meet the requirements for the
similarity function.
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Kullback-Leibler divergence and Jensen-Shannon distance

Cases 1, 2
Kullback-Leibler divergence and Jensen-Shannon distance

= w) lo 91(w) %
Dk (91, g2) —/91( )1 ggg(W)d

Dys(g1, 92) = $Drr(91, 3(91 + 92)) + 2 Drcr(g2, (91 + g2)) do
not meet the requirement for similarity function.

Proof

Dy = if g1(x) # 0, go(x) = 0 on a set of positive
measure with respect to g;.

Drr(91, 92) # Drr(g2, 91)-

Dy, — oo for a pair of normal distributions A/(0, 1) and
N(0, 6%) when 02 — .

A Djs # 0 for a pair of normal distributions A/(0, 1) and
N(0, 02) when 02 — .



Hellinger and Bhattacharyya distances

Cases 3, 4
Hellinger and Bhattacharyya distances

Dr(g1, 92) =1— / Vg1 (W)g2(w)dw,
Dgp(g1, g2) = —IOg/ vV 91(W)go(w)dw do not meet the

requirement for similarity function.

Proof

Both distances do not have the desired property for non-informative
distributions

Du(g1, g2) = 1, Dp(g1, g2) — oo.
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Suggested similarity function

The s-score function is suggested to measure the similarity

Jo 91(W)ga(w)dw
maxy, [ g1(W — b)ga(wW)dw’

8(917 92) =

Theorem 3 (Aduenko, 2014). Suggested similarity function meets
all the requirements for the similarity function.

Examples:

g1(w) g2(w) 5(91, g2)
U0, 1] | U[0.5, 1.5] 0.5
Uup, 1 | U, 1]

N(0, 1) | N(10,1017)
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Expression for s(g1, go) for a pair of normal distributions

Theorem 4 (Aduenko, 2014).
Let g1 = N (v1, X1), g2 = N(va, X2). Then for s(g1, go) obtain
s(g1, g2) =
_ _ T o N1 e _
exp | J(ET v+ D7 ve) (271 + 27 7S v+ 5 M) -
—%VIEflvl — %V;EQ_IVQ] .
Corollary 1. In case X5 = 0 for s-score obtain

T

s(g1, g2) = exp |:—%(V2 —vy) 7 (ve — vl)} .

Corollary 2 (s-score expression simplification).
For a pair of normal distribution the expression for s-score is as
follows

(91, 92) = exp (—(vi = v2) (B + Ta) " (vi — v))
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s-score distribution when the compared models coincide

Theorem 5 (Aduenko, 2014). Let
m Model fi and f5 coincide, i.e. w1 = wy = w.
m Second model parameter values w are known, i.e. X5 = O.
m Features’ values are bounded, i.e. 3C : |z, < C.

m 3, is positive definite, and A\pax(X1)/Amin(X1) = O(1),
Amax(21) — 0 when m; — oo.

Then the expression for s-score for this two models is

T

s(g1, g2) = exp [—1/2(W1 — w) 27 (W1 — W)] ,

and s ~ exp [—1/2¢], where & 4 x?(n) when m; — 0o, n is the
number of features.

Corollary 1. For the case when n = 2 s-score has asymptotically
uniform distribution with [0, 1] range.
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lllustration of s-score application for distinguishing two
models, p = 0.9

Consider two models similar in terms of ||[w; — wy

[wi] = [[wa]| =1, corr(wy, wa) = p.
N; = 10000, Ny =10 N1 = 10000, Ny =100
0.1 0.
03
é025
g 0.2
50.15
5,2 0.1}
0.05
0 05 1 15 $s 05 15
Similarity Similarity
N7 = 10000, Ny = 1000 N7 = 10000, Ny = 10000
1 1
[} o
?oa g
an 204
;oz 5oz
% 5 10 15 5 0 5 10 15 20
Similarity ©10° Similarity w108
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P(Hy|H1) dependence on correlation between true models
parameters.

Consider two models similar in terms of ||w; — wa|,

|lw1|| = ||we|| = 1, corr(wy, wa) = p.
N1 = 10000, N2 =30 N7 = 10000, No =50
Ny = 10000 N2 =100 N7 = 10000, N, = 1000

P(H,[Hy)
°
2

HOA—J?—Q’—L

08
~ 0.6
02
[
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Generalization of s-score distribution theorem for the case of
two finite samples

Theorem 6 (Aduenko, 2016).
If for the models f1 and fo

m Models f1 and f5 coincide, i.e. w1 = wo = w;
m Features’ values are bounded, i.e. 3C : 24| < C, k=1, 2;
E ﬁ)k is positive definite in some neighbourhood of w, and
)\max(Ek)/)\mm(Zk) = 0(1), )\max(zk) —0 when
mp — o0, k=1, 2;
m [Z7YIZ2) B 0 when my, mo — oo;
Then when mq, mo — 0
. . 4 N1, . d
—2log(s(g1, g2)) = (We —Wl)T(El +39) 1(W2 —w) — X2(n).
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s-score properties for normal distributions

Theorem 7 (Aduenko, 2014). Let the models defined by
(vi, 31) and (va, X5) be considered distinguishable if

s (N(vy, 1), N(ve, X2)) <C € (0, 1).

Then if the models are distinguishable according to this criterion,
then

m models defined by (v1, ¥1) and (va, O) are also
distinguishable according to this criterion,

m models defined by (vy, 31) and (v2, AXs), A € [0, 1] are also
distinguishable according to this criterion.
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Estimates on the number of models

Theorem 8 (Aduenko, 2014). Consider K models with

”Vl” =...= ”VKH =M >0unX;=...=Xg = Al Let the
following criterion be used to distinguish the models: models i £ j
are distinguishable, if

S(N(Vi, Ei),N(Vj, E])) <Ce (O, 1)

Then the maximum number of pairwise distinguishable models in a
set is

Kmax = \‘\/7_7' nF(nTH) ! J )

(n—-1I'(5+1) f06/2 sin" 2 pdyp
where 6 € [0, 7], cosf = p = max(—1, 1 + 2X\3 /A InC), n is the

features’ space dimensionality. Moreover it is feasible to construct
Kpin pairwise distinguishable models, where

nr(h) |
(n—=1I(3+1) foe sin" 2 pdyp |

Kmin = \‘\/%
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Estimates on the number of models (continued)

Theorem 8 (continued). For C close to 1 ob;cla_in

Al (1) T
Kmax ~ \/7_-[- 2

(n—=1I'(5+1) (1—,())”7_1 5

log,o K
s 0 o o

B o




Conclusion

The theory for selection of (s, «) — adequate multimodels
containing pairwise distinguishable models was constructed.

Similarity function s-score which enables checking for similarity
between two models was suggested. Asymptotic properties for
distributions of s(g1, g2) and log(s(g1, g2)) were proved for
generalized linear models.

The method for statistical comparison of models based on
introduced similarity function is suggested.

Using the introduced s-score lower and upper bounds on the number
of pairwise distinguishable models were obtained.

Features’ selection algorithm based on maximum evidence estimate
of models’ parameters' covariance matrix is suggested.

Structural constraints on covariance matrix in features' selection
algorithm were considered. It was shown that the non-diagonal
max-evidence estimate of covariance matrix is asymptotically
degenerate.
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