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Goals

Goal: 
onstru
t mathemati
al apparatus to sele
t multimodels for

solving re
ognition and 
lassi�
ation tasks.

Motivation. Statisti
al inhomogeneity of a sample arises in

re
ognition and 
lassi�
ation problems. Multimodels are used to

handle the issue. They 
ontain several models, for whi
h we aim to

determine statisti
al dis
ernability.

Problem. Multimodel may 
ontain many similar models, whi
h

results in low fore
ast quality and la
k of interpretability. Models'

feature spa
es might be di�erent, in parti
ular they 
an have

di�erent dimensionality.

Method. Multidimensional statisti
s and bayesian inferen
e to


onstru
t a method for statisti
al testing of models' dis
ernability.

Similarity fun
tion is introdu
ed and analyzed. The fun
tion is

de�ned for a pair of distributions possibly with di�erent supports.
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Multimodels: mixtures of models and multilevel models

De�nition 1. Mixture of models is

a regression model f =

K
∑

k=1

πkfk(wk),

where

K
∑

k=1

πk = 1, πk ≥ 0.
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De�nition 2. Multilevel regression

models is a union of regression

models fk, k = 1, . . . ,K su
h that the

obje
ts' index set is divided as follows

I = ⊔K
k=1Ik and for ea
h obje
t with

index in Ik model fk is used.
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Probabilisti
 model for mixture of models

Data generation hypothesis

There exists a prior distribution on ve
tor of models' weights

π = [π1, . . . , πK ]T ∼ q(π|α).
Models' parameters w1, . . . , wK are mutually independent

together with models' weight ve
tor π.

Ea
h obje
t xi is des
ribed by a single model ki, and random

variables k1, . . . , km 
orresponding to model indi
es are

mutually independent.

Target variables yi|ki, wki ∼ Be
(

fki(xi, wki)
)

are mutually

independent together with π.

Joint distribution for a multimodel

p(y, w1, . . . , wK , π|X) =

q(π|α)
K
∏

j=1

pj(wj)

m
∏

i=1

(

K
∑

k=1

πkfk(xi, wk)
yi
(

1− fk(xi, wk))
1−yi

)

)

.
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Multimodel optimality and adequa
y 
ondition

De�nition 3. Call a multimodel de�ned by the joint distribution

p(y, w1, . . . , wK , π|X) (s, α)-adequate, if the models


onstituting the multimodel are pairwise statisti
ally distinguishable

with the similarity fun
tion s at signi�
an
e level α.
Denote the set of all (s, α)-adequate multimodels by Ms, α.

De�nition 4. Call a multimodel optimal, if it has the maximum

eviden
e [q(π|α), p1(w1), . . . , pK(wK)] = argmax
q, p1, ..., pK

p(y|X) =

argmax
q, p1, ..., pK

∫

p(y, w1, . . . , wK , π|X)dw1 . . . dwKdπ.

Maximum a posteriori probability estimate for models'

parameters and multimodel's weights

[π, w1, . . . , wK ] = argmax
π,w1, ...,wK

p(π, w1, . . . , wK |X, y).
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EM-algorithm for the mixture of logisti
 regression models

Joint distribution for the mixture of models

Introdu
e hidden variables {zik ∈ {0, 1}} where zik = 1 means that

an obje
t (xi, yi) belongs to model k.

p(y, Z, π, w1, . . . , wK |X, A1, . . . , AK) =
K
∏

k=1

pk(wk|0, A−1

k )

Γ(Kα)

ΓK(α)

K
∏

k=1

πα−1

k

m
∏

i=1

K
∏

k=1

{πkf(xi, wk)
yi(1− f(xi, wk))

1−yi}zik .

E-step

γik = Ezik = πkf(xi, wk)
yi(1− f(xi, wk))

1−yi/Ni.

M-step

At the M-step models' weights π and ve
tors of models' parameters

w1, . . . , wK are de�ned.

πk = max (0, γk + α− 1) /Zk, ãäå γk =
m
∑

i=1

γik
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M-step

l̃(w1, . . . ,wK , π|X, y) =

−
K
∑

k=1

(γk + α− 1) log πk +

K
∑

k=1

l̃k(wk|X, y, Ak).

∂l̃k
∂wk

= XTΓk(f − y) +Akwk, Hk = X
T

RkX+Ak,

Rk = diag(γikf(x
T

i wk)f(−xT

i wk)).

Properties of the optimized fun
tion

l̃k(y, wk|X, Ak, Γk) with �xed obje
ts' weights Γk is the logarithm

of joint distribution for a standard logisti
 regression model with

weighted obje
ts.

Suggested features' sele
tion method

Ak = argmax
A∈M

p̃(y|X,A, Γk), ãäå

p̃(y|X, A, Γk) =

∫

l̃k(y, wk|X, A, Γk)dwk.
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Features' sele
tion using maximum eviden
e prin
iple
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Òheorem 1 (Aduenko, 2016)

Ïóñòü n = 2, k = 1, w = [w1, w2], w1, w2 6= 0. Denote by

Σ = X
T

RX =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

, A =

(

s21 κs1s2
κs1s2 s22

)

.

If m → ∞ and

σ2
1 , σ

2
2

P→ ∞,

∃ c > 0 : P(1− ρ2 ≥ c) → 1,

then s∗1, s
∗
2

P→ ∞, κ∗
P→ −sign(w1w2).

8 / 23



Model 
omparison problem statement

Issue

Despite the spar
i�
ation of a multimodel, it 
an still be not

(s, α) � adequate, i.e. 
an 
ontain similar models.

Input

Two models f1 and f2 with ve
tors of parameters w1 and w2.

Samples (X1, y1) and (X2, y2),
y1,i = f1(x1,i, w1), y2,i = f2(x2,i, w2).

Prior distributions on models' parameters

w1 ∼ p1(w), w2 ∼ p2(w).

Posterior distributions on models' parameters p(w1|X1, y1)
and p(w2|X2, y2) denoted further by g1(w) and g2(w).

Goal: to 
onstru
t a similarity fun
tion de�ned on a pair of

distributions g1(w) and g2(w). It must satisfy several requirements.
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Requirements for similarity fun
tion s

Similarity fun
tion s must

1 be de�ned in 
ase distributions' supports are di�erent,

2 satisfy s(g1, g2) ≤ s(g1, g1),

3 satisfy s ∈ [0, 1],

4 satisfy s(g1, g1) = 1,

5 be 
lose to 1, if g2(w) is non-informative distribution,

6 be symmetri
, i.e. s(g1, g2) = s(g2, g1).

Òheorem 2 (Aduenko, 2014)

Kullba
k-Leibler divergen
e, Jensen-Shannon, Hellinger and

Bhatta
haryya distan
es do not meet the requirements for the

similarity fun
tion.
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Illustration of the requirements for similarity fun
tion

It is important that the value of s

is 
lose to 1 if g2(w) is non-informative distribution.
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g1(w) = N (0, 0.12)
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Theorem 2 (Aduenko, 2014)

Kullba
k-Leibler divergen
e, Jensen-Shannon, Hellinger and

Bhatta
haryya distan
es do not meet the requirements for the

similarity fun
tion.
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Kullba
k-Leibler divergen
e and Jensen-Shannon distan
e

Cases 1, 2

Kullba
k-Leibler divergen
e and Jensen-Shannon distan
e

DKL(g1, g2) =

∫

g1(w) log
g1(w)

g2(w)
dw

DJS(g1, g2) =
1

2
DKL(g1,

1

2
(g1 + g2)) +

1

2
DKL(g2,

1

2
(g1 + g2)) do

not meet the requirement for similarity fun
tion.

Proof

1 DKL = ∞ if g1(x) 6= 0, g2(x) = 0 on a set of positive

measure with respe
t to g1.

2 DKL(g1, g2) 6= DKL(g2, g1).

3 DKL → ∞ for a pair of normal distributions N (0, 1) and
N (0, σ2) when σ2 → ∞.

4 DJS 6→ 0 for a pair of normal distributions N (0, 1) and
N (0, σ2) when σ2 → ∞.
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Hellinger and Bhatta
haryya distan
es

Cases 3, 4

Hellinger and Bhatta
haryya distan
es

DH(g1, g2) = 1−
∫

√

g1(w)g2(w)dw,

DB(g1, g2) = − log

∫

√

g1(w)g2(w)dw do not meet the

requirement for similarity fun
tion.

Proof

Both distan
es do not have the desired property for non-informative

distributions

DH(g1, g2) → 1, DB(g1, g2) → ∞.
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Suggested similarity fun
tion

The s-s
ore fun
tion is suggested to measure the similarity

s(g1, g2) =

∫

w
g1(w)g2(w)dw

maxb
∫

w
g1(w − b)g2(w)dw

.

Theorem 3 (Aduenko, 2014). Suggested similarity fun
tion meets

all the requirements for the similarity fun
tion.

Examples:

g1(w) g2(w) s(g1, g2)

U [0, 1] U [0.5, 1.5] 0.5

U [0, 1] U [0., 1.] 1

N (0, 1) N (10, 1010) 1
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Expression for s(g1, g2) for a pair of normal distributions

Theorem 4 (Aduenko, 2014).

Let g1 = N (v1, Σ1), g2 = N (v2, Σ2). Then for s(g1, g2) obtain

s(g1, g2) =

exp
[

1

2
(Σ−1

1
v1 +Σ−1

2
v2)

T

(Σ−1
1

+Σ−1
2

)−1(Σ−1
1

v1 +Σ−1
2

v2) −

−1

2
v
T

1Σ
−1
1

v1 − 1

2
v
T

2Σ
−1
2

v2

]

.

Corollary 1. In 
ase Σ2 = 0 for s-s
ore obtain

s(g1, g2) = exp
[

−1

2
(v2 − v1)

T

Σ−1
1

(v2 − v1)
]

.

Corollary 2 (s-s
ore expression simpli�
ation).

For a pair of normal distribution the expression for s-s
ore is as

follows

s(g1, g2) = exp
(

−1

2
(v1 − v2)

T

(Σ1 +Σ2)
−1(v1 − v2)

)

.
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s-s
ore distribution when the 
ompared models 
oin
ide

Theorem 5 (Aduenko, 2014). Let

Model f1 and f2 
oin
ide, i.e. w1 = w2 = w.

Se
ond model parameter values w are known, i.e. Σ2 = O.

Features' values are bounded, i.e. ∃ C : |x1ij | ≤ C.

Σ1 is positive de�nite, and λmax(Σ1)/λmin(Σ1) = O(1),
λmax(Σ1) → 0 when m1 → ∞.

Then the expression for s-s
ore for this two models is

s(g1, g2) = exp
[

−1/2(ŵ1 −w)
T

Σ−1
1

(ŵ1 −w)
]

,

and s ∼ exp [−1/2ξ], where ξ
d→ χ2(n) whenm1 → ∞, n is the

number of features.

Corollary 1. For the 
ase when n = 2 s-s
ore has asymptoti
ally

uniform distribution with [0, 1] range.
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Illustration of s-s
ore appli
ation for distinguishing two

models, ρ = 0.9

Consider two models similar in terms of ‖w1 −w2‖,
‖w1‖ = ‖w2‖ = 1, corr(w1, w2) = ρ.
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P(H0|H1) dependen
e on 
orrelation between true models

parameters.

Consider two models similar in terms of ‖w1 −w2‖,
‖w1‖ = ‖w2‖ = 1, corr(w1, w2) = ρ.
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Generalization of s-s
ore distribution theorem for the 
ase of

two �nite samples

Theorem 6 (Aduenko, 2016).

If for the models f1 and f2

Models f1 and f2 
oin
ide, i.e. w1 = w2 = w;

Features' values are bounded, i.e. ∃ C : |xkij | ≤ C, k = 1, 2;

Σ̂k is positive de�nite in some neighbourhood of w, and

λmax(Σk)/λmin(Σk) = O(1), λmax(Σk) → 0 when

mk → ∞, k = 1, 2;

‖Σ−1

1
‖‖Σ2‖ P→ 0 when m1, m2 → ∞;

Then when m1, m2 → ∞
−2 log(s(g1, g2)) = (ŵ2− ŵ1)

T

(Σ̂1+ Σ̂2)
−1(ŵ2− ŵ1)

d−→ χ2(n).
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s-s
ore properties for normal distributions

Theorem 7 (Aduenko, 2014). Let the models de�ned by

(v1, Σ1) and (v2, Σ2) be 
onsidered distinguishable if

s (N (v1, Σ1), N (v2, Σ2)) ≤ C ∈ (0, 1).

Then if the models are distinguishable a

ording to this 
riterion,

then

models de�ned by (v1, Σ1) and (v2, O) are also

distinguishable a

ording to this 
riterion,

models de�ned by (v1, Σ1) and (v2, λΣ2), λ ∈ [0, 1] are also

distinguishable a

ording to this 
riterion.
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Estimates on the number of models

Theorem 8 (Aduenko, 2014). Consider K models with

‖v1‖ = . . . = ‖vK‖ = λ1 > 0 è Σ1 = . . . = ΣK = λ2I. Let the

following 
riterion be used to distinguish the models: models i 6= j
are distinguishable, if

s (N (vi, Σi),N (vj , Σj)) ≤ C ∈ (0, 1).

Then the maximum number of pairwise distinguishable models in a

set is

Kmax =

⌊

√
π

nΓ(n+1

2
)

(n− 1)Γ(n
2
+ 1)

1
∫ θ/2
0

sinn−2 ϕdϕ

⌋

,

where θ ∈ [0, π], cos θ = ρ = max(−1, 1 + 2λ2/λ
2
1 lnC), n is the

features' spa
e dimensionality. Moreover it is feasible to 
onstru
t

Kmin pairwise distinguishable models, where

Kmin =

⌊

√
π

nΓ(n+1

2
)

(n− 1)Γ(n
2
+ 1)

1
∫ θ
0
sinn−2 ϕdϕ

⌋

.
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Estimates on the number of models (
ontinued)

Theorem 8 (
ontinued). For C 
lose to 1 obtain

Kmax ≈









√
π

nΓ(n+1

2
)

(n− 1)Γ(n
2
+ 1)

2
n−1

2

(1− ρ)
n−1

2







 ,

Kmin ≈









√
π

nΓ(n+1

2
)

(n− 1)Γ(n
2
+ 1)

1

2
n−1

2 (1− ρ)
n−1

2







 .
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Con
lusion

The theory for sele
tion of (s, α) � adequate multimodels


ontaining pairwise distinguishable models was 
onstru
ted.

Similarity fun
tion s-s
ore whi
h enables 
he
king for similarity

between two models was suggested. Asymptoti
 properties for

distributions of s(g1, g2) and log(s(g1, g2)) were proved for

generalized linear models.

The method for statisti
al 
omparison of models based on

introdu
ed similarity fun
tion is suggested.

Using the introdu
ed s-s
ore lower and upper bounds on the number

of pairwise distinguishable models were obtained.

Features' sele
tion algorithm based on maximum eviden
e estimate

of models' parameters' 
ovarian
e matrix is suggested.

Stru
tural 
onstraints on 
ovarian
e matrix in features' sele
tion

algorithm were 
onsidered. It was shown that the non-diagonal

max-eviden
e estimate of 
ovarian
e matrix is asymptoti
ally

degenerate.
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