Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

Transformer

Sergey Ivanov (617)

qbrick@mail.ru

October 28, 2019

00000000 000000 0000 0000 00000 000000	Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	00000000	000000	0000	00000	0000000

2 Attention

- 3 Multi-Head Attention
- 4 Attention is All You Need
- 5 BERT, GPT-2, ...

	РТ-2,
●00000000 000000 0000 0000 00000 000000 0000)

Section 1

Recap

Recap 0●0000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Neural N	letworks			

$$y(x) = \sigma(Wx + b)$$

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000				

Neural Networks

$$y(x) = \sigma(Wx + b)$$

Sergey Ivanov (617)

MSU

October 28, 2019 4 / 34

Recap 00●000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Softmax				

Classification problem head:

 $softmax(x)_i \propto e^{x_i}$

Recap 00●000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Softmax				

Classification problem head:

 $softmax(x)_i \propto e^{x_i}$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> 5
x	-0.3	0	0.01	1	-0.1
softmax(x)	0.116	0.157	0.158	0.426	0.142
softmax(3x)	0.017	0.043	0.044	0.863	0.032
softmax(10x)	2e-06	5e-5	5e-5	0.99999	2e-05

! scaling factor often influences the smoothness of approximations!

 Recap
 Attention
 Multi-Head Attention
 Attention is All You Need
 BERT, GPT-2, ...

 00000000
 0000
 0000
 0000
 00000
 0000000

Vanishing gradients problem

 Recap
 Attention
 Multi-Head Attention
 Attention is All You Need
 BERT, GPT-2, ...

 00000000
 00000
 0000
 0000
 00000
 000000
 0000000

Vanishing gradients problem

Trying to avoid the problem:

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000				

Architectures

FULLY-CONNECTED

RECURRENT

CONVOLUTIONAL

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000				

Word embeddings

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000				

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000				

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000				

00000000 00000 0000 00000 00000 000000	Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, .
	000000000	000000	0000	00000	0000000

Sergey Ivanov (617)

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, .
000000000	000000	0000	00000	0000000

Sergey Ivanov (617) MSU

Recap 0000000●0	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
No mem	ory?			

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

Recap Atten	tion iviuiti-H	ead Attention Attentio	n is All You Need BERT,	GPT-2,
000000000 00000	0000 00	00000	00000	000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

October 28, 2019 11 / 34

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

Sergey Ivanov (617) MSU

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000	000000	0000	00000	0000000

Sergey Ivanov (617)

	Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
00000000 000000 0000 00000 0000000	00000000	00000	0000	00000	0000000

Section 2

Attention

Recap 000000000	Attention 00000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Rememb	ering dic	t()		

Suppose you have a Python dictionary:

d = dict(zip(K, V))

where

•
$$K \in \mathbb{R}^{n \times k}$$
 — *n* keys, $K_i \in \mathbb{R}^k$

•
$$V \in \mathbb{R}^{n \times v}$$
 — *n* values, $V_i \in \mathbb{R}^{v}$

Recap 000000000	Attention 0●0000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Rememb	ering dic	t()		

Suppose you have a Python dictionary:

d = dict(zip(K, V))

where

•
$$K \in \mathbb{R}^{n \times k}$$
 — n keys, $K_i \in \mathbb{R}^k$

•
$$V \in \mathbb{R}^{n \times v}$$
 — *n* values, $V_i \in \mathbb{R}^{v}$

Suppose you have query $q \in \mathbb{R}^k$. d[q] — ?

Recap 000000000	Attention 00000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Rememb	ering dic	t()		

Suppose you have a Python dictionary:

d = dict(zip(K, V))

where

•
$$K \in \mathbb{R}^{n \times k}$$
 — *n* keys, $K_i \in \mathbb{R}^k$

• $V \in \mathbb{R}^{n \times v}$ — *n* values, $V_i \in \mathbb{R}^v$

Suppose you have query $q \in \mathbb{R}^k$. d[q] — ?

Weeeell, find *i*: $K_i = q$, then the answer is V_i .

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Approxir	nating di	ict()		

$$K \in \mathbb{R}^{n \times k}$$
 $V \in \mathbb{R}^{n \times v}$ $q \in \mathbb{R}^k$

1
$$w_i = \mathbb{I}[K_i = q]$$

2 $d[q] = \sum_{i=1}^{n} w_i V_i$

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Approxir	nating d	ict()		

$$K \in \mathbb{R}^{n \times k}$$
 $V \in \mathbb{R}^{n \times v}$ $q \in \mathbb{R}^k$

1
$$w_i = \mathbb{I}[K_i = q]$$
 — discrete!
2 $d[q] = \sum_{i=1}^{n} w_i V_i$

Recap 000000000	Attention 00●000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Approxir	nating di	ict()		

$$K \in \mathbb{R}^{n imes k}$$
 $V \in \mathbb{R}^{n imes v}$ $q \in \mathbb{R}^k$

1
$$w_i = \mathbb{I}[K_i = q]$$
 — discrete!
2 $d[q] = \sum_i^n w_i V_i$

Let $\rho(K_i, q) \in \mathbb{R}$ be some measure of similarity (*compatibility function*) between K_i, q .

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Approxir	nating d	ict()		

$$K \in \mathbb{R}^{n \times k}$$
 $V \in \mathbb{R}^{n \times v}$ $q \in \mathbb{R}^k$

1
$$w = \operatorname{argmax}(a), \quad a_i = \rho(K_i, q)$$

2 $d[q] = \sum_{i=1}^{n} w_i V_i$

Let $\rho(K_i, q) \in \mathbb{R}$ be some measure of similarity (*compatibility function*) between K_i, q .

Recap 000000000	Attention 00●000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Approxir	nating di	ct()		

$$K \in \mathbb{R}^{n imes k}$$
 $V \in \mathbb{R}^{n imes v}$ $q \in \mathbb{R}^k$

1
$$w = \operatorname{softmax}(a), \quad a_i = \rho(K_i, q)$$

2 $d[q] = \sum_i^n w_i V_i$

Let $\rho(K_i, q) \in \mathbb{R}$ be some measure of similarity (*compatibility function*) between K_i, q .

Recap 000000000	Attention 00●000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Approxir	nating di	ict()		

$$K \in \mathbb{R}^{n \times k}$$
 $V \in \mathbb{R}^{n \times v}$ $q \in \mathbb{R}^k$

1
$$w = \operatorname{softmax}(a), \quad a_i = \rho(K_i, q)$$

2 $d[q] = \sum_i^n w_i V_i$

Let $\rho(K_i, q) \in \mathbb{R}$ be some measure of similarity (*compatibility function*) between K_i, q .

Common choice: $\rho(K_i, q) = \langle K_i, q \rangle$

Recap 000000000	Attention 00●000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Approxir	nating di	ict()		

$$K \in \mathbb{R}^{n imes k}$$
 $V \in \mathbb{R}^{n imes v}$ $q \in \mathbb{R}^k$

Solution

1
$$w = \text{softmax}(a), \quad a = Kq$$

2 $d[q] = \sum_{i=1}^{n} w_i V_i$

Let $\rho(K_i, q) \in \mathbb{R}$ be some measure of similarity (*compatibility function*) between K_i, q .

Common choice: $\rho(K_i, q) = \langle K_i, q \rangle$

Recap 000000000	Attention 00●000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Approxir	nating d	ict()		

$$K \in \mathbb{R}^{n imes k}$$
 $V \in \mathbb{R}^{n imes v}$ $q \in \mathbb{R}^k$

Solution

1 $w = \operatorname{softmax}(Kq)$ 2 $d[q] = \sum_{i}^{n} w_i V_i$

Let $\rho(K_i, q) \in \mathbb{R}$ be some measure of similarity (*compatibility function*) between K_i, q .

Common choice: $\rho(K_i, q) = \langle K_i, q \rangle$

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000				
Approxi	mating d	ict()	Approximating dict()					

$$K \in \mathbb{R}^{n imes k}$$
 $V \in \mathbb{R}^{n imes v}$ $q \in \mathbb{R}^k$

Solution

Let $\rho(K_i, q) \in \mathbb{R}$ be some measure of similarity (*compatibility function*) between K_i, q .

Common choice: $\rho(K_i, q) = \langle K_i, q \rangle$

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000			

Assume that all $q, K_i \sim \mathcal{N}(0, I_{k \times k})$.

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000			

Assume that all $q, K_i \sim \mathcal{N}(0, I_{k \times k})$. What will be distribution of $\langle q, K_i \rangle = \sum_i q_j K_{ij} \sim ?!?$

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000			

Assume that all $q, K_i \sim \mathcal{N}(0, I_{k \times k})$. What will be distribution of $\langle q, K_i \rangle = \sum_i q_j K_{ij} \sim ?!?$

$$\mathbb{E}\sum_{i=1}^{k}q_{j}K_{ij}=\sum_{i=1}^{k}\mathbb{E}q_{j}K_{ij}=\{\text{independence}\}=\sum_{i=1}^{k}\mathbb{E}q_{j}\mathbb{E}K_{ij}=\sum_{i=1}^{k}0=0$$

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000			

Assume that all $q, K_i \sim \mathcal{N}(0, I_{k \times k})$. What will be distribution of $\langle q, K_i \rangle = \sum_i q_j K_{ij} \sim ?!?$

$$\mathbb{E}\sum_{i=1}^{k}q_{j}K_{ij}=\sum_{i=1}^{k}\mathbb{E}q_{j}K_{ij}=\{\text{independence}\}=\sum_{i=1}^{k}\mathbb{E}q_{j}\mathbb{E}K_{ij}=\sum_{i=1}^{k}0=0$$

$$\mathbb{D}\sum_{k=1}^{k}q_{j}K_{ij} = \{\text{independence}\} = \sum_{k=1}^{k}\mathbb{D}q_{j}K_{ij} = \\ = \{\text{independence}_{\text{zero expectation}}\} = \sum_{k=1}^{k}\mathbb{D}q_{j}\mathbb{D}K_{ij} = \sum_{k=1}^{k}1 = k$$

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000			

Assume that all $q, K_i \sim \mathcal{N}(0, I_{k \times k})$. What will be distribution of $\langle q, K_i \rangle = \sum_i q_j K_{ij} \sim ?!?$

$$\mathbb{E}\sum_{i=1}^{k}q_{j}K_{ij}=\sum_{i=1}^{k}\mathbb{E}q_{j}K_{ij}=\{\text{independence}\}=\sum_{i=1}^{k}\mathbb{E}q_{j}\mathbb{E}K_{ij}=\sum_{i=1}^{k}0=0$$

$$\mathbb{D}\sum_{i=1}^{k}q_{j}K_{ij} = \{\text{independence}\} = \sum_{i=1}^{k}\mathbb{D}q_{j}K_{ij} = \\ = \{\text{independence}_{\text{zero expectation}}\} = \sum_{i=1}^{k}\mathbb{D}q_{j}\mathbb{D}K_{ij} = \sum_{i=1}^{k}1 = k$$

Similarity metric normalisation:

$$\rho(K_i, q) = \frac{\langle K_i, q \rangle}{\sqrt{k}}$$

Recap
0000000Attention
000000Multi-Head Attention
0000Attention is All You Need
00000BERT, GPT-2, ...
0000000

Scalar Product Normalization

Assume that all $q, K_i \sim \mathcal{N}(0, I_{k \times k})$. What will be distribution of $\langle q, K_i \rangle = \sum_i q_j K_{ij} \sim ?!?$

$$\mathbb{E}\sum_{i=1}^{k}q_{j}K_{ij} = \sum_{i=1}^{k}\mathbb{E}q_{j}K_{ij} = \{\text{independence}\} = \sum_{i=1}^{k}\mathbb{E}q_{j}\mathbb{E}K_{ij} = \sum_{i=1}^{k}\mathbb{O}=0$$

$$\mathbb{D}\sum_{i=1}^{k}q_{j}K_{ij} = \{\text{independence}\} = \sum_{i=1}^{k}\mathbb{D}q_{j}K_{ij} = \underbrace{\{\text{independence}\\ \text{zero expectation}\}} = \sum_{i=1}^{k}\mathbb{D}q_{j}\mathbb{D}K_{ij}$$
Similarity metric normalisation:
$$\rho(K_{i}, q) = \frac{\langle K_{i}, q \rangle}{\sqrt{k}}$$

MSU

Transformer

٩

Recap 000000000	Attention 0000●0	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Attentio	n			

input: $K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$

Recap 000000000	Attention 0000●0	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Attentior	า			

input:
$$K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$$

$$W = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}$$

Recap 000000000	Attention 0000●0	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Attentior	า			

input:
$$K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$$

$$W = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}$$

output: $WV \in \mathbb{R}^{b \times v}$

Recap 000000000	Attention 0000●0	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Attentio	n			

input:
$$K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$$

$$W = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}$$

output: $WV \in \mathbb{R}^{b \times v}$ parameters: :(

Recap 000000000	Attention 0000●0	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Attentio	n			

input:
$$K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$$

$$W = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}$$

output:
$$WV \in \mathbb{R}^{b \times v}$$

parameters: :(

Today...

$$K \equiv V$$

Sergey Ivanov (617) MSU

Recap 000000000	Attention 0000●0	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Attentio	n			

input:
$$K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$$

$$W = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}$$

output:
$$WV \in \mathbb{R}^{b \times v}$$

parameters: :(

Today...

$$K \equiv V$$

Sergey Ivanov (617) MSU

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000	000000	0000	00000	0000000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000			

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000			

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000	000000	0000	00000	00000000

00000000 000000 00000 000000 0000000	Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000000	000000	0000	00000	0000000

Section 3

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
		0000		

Metric parametrization

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
		0000		

Metric parametrization

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
		0000		

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
		0000		

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
		0000		

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
		0000		

Self-attention

Self-attention

$$Q \equiv K \equiv V$$

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
		0000		

Self-attention

Self-attention

$Q \equiv K \equiv V$

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000	000000	0000	00000	0000000

Self-attention

Self-attention

$Q\equiv K\equiv V$

! not all multi-head attention blocks in Transformer are self-attention!

0000000 00000 0000 0000 0000 0000 00000 0000	Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
	000000000	000000	0000	00000	0000000

Section 4

Attention is All You Need

Attention is All You Need Recap Multi-Head Attention BERT, GPT-2, ... 00000

Positional Embeddings

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000
Encoder				

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000	000000		00●00	00000000

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000	000000		00●00	00000000

Encoder

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 00000000

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
			00000	

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
			00000	

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
			00000	

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
			00000	

More sources about Transformer

Animation of intuition: •Link

Illustrated Transformer

https:

//jalammar.github.io/illustrated-transformer/

OpenAl Blog

https://ai.googleblog.com/2017/08/ transformer-novel-neural-network.html

MIPT Lecture (RUS)

https://www.youtube.com/watch?v=Bg8Y5q10iP0

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
000000000	000000	0000	00000	•000000

Section 5

BERT, GPT-2, ...

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
				0000000

BERT: pre-training

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
				0000000

BERT: fine-tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

⁽b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

MSU

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

GPT-2 (Generative Pre-Training)

- language model based on masked multi-head self-attention
- with 1.5 billions of parameters (!)
- (rumors) 2048 TPU days to train
- which is able to generate pretty realistic texts

GPT-2 (Generative Pre-Training)

- language model based on masked multi-head self-attention
- with 1.5 billions of parameters (!)
- (rumors) 2048 TPU days to train
- which is able to generate pretty realistic texts

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
				00000000

How to apply this to music?

Lin, brault, la 8 homen and a Haites.

Sergey Ivanov (617)

MSU

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
				00000000

How to apply this to music?

Sergey Ivanov (617)

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, .
				00000000

MIDI Music Representation

Each note has:

- beginning (milliseconds)
- end (milliseconds)

MSU

- pitch (key): 128 possible options
- velocity (128 possible options; but we can take smaller grid)

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
				00000000

Notes is Language

Recap	Attention	Multi-Head Attention	Attention is All You Need	BERT, GPT-2,
				00000000

Notes is Language

MSU

SET_VELOCITY<80>, NOTE_ON<60> TIME_SHIFT<500>, NOTE_ON<64> TIME_SHIFT<500>, NOTE_ON<67> TIME_SHIFT<1000>, NOTE_OFF<60>, NOTE_OFF<64>, NOTE_OFF<67> TIME_SHIFT<500>, SET_VELOCITY<100>, NOTE_ON<65> TIME_SHIFT<500>, NOTE_OFF<65>

Recap 000000000	Attention 000000	Multi-Head Attention	Attention is All You Need	BERT, GPT-2, 0000000●

Looking for more details...

- Generalized Language Modeling (BERT section) https://lilianweng.github.io/lil-log/2019/01/31/ generalized-language-models.html#bert
- Illustrated GPT
 - http://jalammar.github.io/illustrated-gpt2/
- Transformer-XL

https://arxiv.org/abs/1901.02860

Music Transformer

https://magenta.tensorflow.org/music-transformer

Generated music visualisation: •Link