Transformer

Sergey Ivanov (617)
qbrick@mail.ru

October 28, 2019

1 Recap

2 Attention

3 Multi-Head Attention

4 Attention is All You Need

5 BERT, GPT-2, ...

Section 1

Recap

Neural Networks

$$
y(x)=\sigma(W x+b)
$$

Neural Networks

$$
y(x)=\sigma(W x+b)
$$

Softmax

Classification problem head:

$$
\operatorname{softmax}(x)_{i} \propto e^{x_{i}}
$$

Softmax

Classification problem head:

$$
\operatorname{softmax}(x)_{i} \propto e^{x_{i}}
$$

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
\boldsymbol{x}	$\mathbf{- 0 . 3}$	$\mathbf{0}$	$\mathbf{0 . 0 1}$	$\mathbf{1}$	$\mathbf{- 0 . 1}$
softmax (x)	0.116	0.157	0.158	0.426	0.142
softmax $(3 x)$	0.017	0.043	0.044	0.863	0.032
softmax $(10 x)$	$2 \mathrm{e}-06$	$5 \mathrm{e}-5$	$5 \mathrm{e}-5$	0.99999	2e-05

! scaling factor often influences the smoothness of approximations!

Vanishing gradients problem

Vanishing gradients problem

Trying to avoid the problem:

Architectures

FULLY-CONNECTED

RECURRENT

CONVOLUTIONAL

TRANSFORMER

Word embeddings

Sequence Embedding

No memory?

THE TRAGEDY OF A THREE SECOND MEMORY

Machine Translation

Section 2

Attention

Remembering dict()

Suppose you have a Python dictionary:

$$
\mathrm{d}=\operatorname{dict}(z i p(\mathrm{~K}, \mathrm{~V}))
$$

where
■ $K \in \mathbb{R}^{n \times k}-n$ keys, $K_{i} \in \mathbb{R}^{k}$
■ $V \in \mathbb{R}^{n \times v}$ - n values, $V_{i} \in \mathbb{R}^{v}$

Remembering dict()

Suppose you have a Python dictionary:

$$
\mathrm{d}=\operatorname{dict}(z i p(\mathrm{~K}, \mathrm{~V}))
$$

where
■ $K \in \mathbb{R}^{n \times k}-n$ keys, $K_{i} \in \mathbb{R}^{k}$
■ $V \in \mathbb{R}^{n \times v}-n$ values, $V_{i} \in \mathbb{R}^{v}$
Suppose you have query $q \in \mathbb{R}^{k} . \mathrm{d}[q]$ - ?

Remembering dict()

Suppose you have a Python dictionary:

$$
\mathrm{d}=\operatorname{dict}(z i p(\mathrm{~K}, \mathrm{~V}))
$$

where
■ $K \in \mathbb{R}^{n \times k}-n$ keys, $K_{i} \in \mathbb{R}^{k}$
■ $V \in \mathbb{R}^{n \times v}-n$ values, $V_{i} \in \mathbb{R}^{v}$
Suppose you have query $q \in \mathbb{R}^{k} . \mathrm{d}[q]$ - ?
Weeeell, find $i: K_{i}=q$, then the answer is V_{i}.

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution

$$
\begin{aligned}
& 1 w_{i}=\mathbb{I}\left[K_{i}=q\right] \\
& \mathbf{2} \mathrm{d}[q]=\sum_{i}^{n} w_{i} V_{i}
\end{aligned}
$$

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution
$1 w_{i}=\mathbb{I}\left[K_{i}=q\right]$ - discrete!
$2 \mathrm{~d}[q]=\sum_{i}^{n} w_{i} V_{i}$

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution

$1 w_{i}=\mathbb{I}\left[K_{i}=q\right]$ - discrete!
$2 \mathrm{~d}[q]=\sum_{i}^{n} w_{i} V_{i}$

Let $\rho\left(K_{i}, q\right) \in \mathbb{R}$ be some measure of similarity (compatibility function) between K_{i}, q.

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution

$$
\begin{aligned}
& 1 w=\operatorname{argmax}(a), \quad a_{i}=\rho\left(K_{i}, q\right) \\
& 2 \mathrm{~d}[q]=\sum_{i}^{n} w_{i} V_{i}
\end{aligned}
$$

Let $\rho\left(K_{i}, q\right) \in \mathbb{R}$ be some measure of similarity (compatibility function) between K_{i}, q.

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution

$1 w=\operatorname{softmax}(a), \quad a_{i}=\rho\left(K_{i}, q\right)$
2 $\mathrm{d}[q]=\sum_{i}^{n} w_{i} V_{i}$

Let $\rho\left(K_{i}, q\right) \in \mathbb{R}$ be some measure of similarity (compatibility function) between K_{i}, q.

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution

$$
1 w=\operatorname{softmax}(a), \quad a_{i}=\rho\left(K_{i}, q\right)
$$

2 $\mathrm{d}[q]=\sum_{i}^{n} w_{i} V_{i}$

Let $\rho\left(K_{i}, q\right) \in \mathbb{R}$ be some measure of similarity (compatibility function) between K_{i}, q.

Common choice: $\rho\left(K_{i}, q\right)=\left\langle K_{i}, q\right\rangle$

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution

$1 w=\operatorname{softmax}(a), \quad a=K q$
2 $\mathrm{d}[q]=\sum_{i}^{n} w_{i} V_{i}$

Let $\rho\left(K_{i}, q\right) \in \mathbb{R}$ be some measure of similarity (compatibility function) between K_{i}, q.

Common choice: $\rho\left(K_{i}, q\right)=\left\langle K_{i}, q\right\rangle$

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution

$1 \quad w=\operatorname{softmax}(\mathrm{Kq})$
$2 \mathrm{~d}[q]=\sum_{i}^{n} w_{i} V_{i}$

Let $\rho\left(K_{i}, q\right) \in \mathbb{R}$ be some measure of similarity (compatibility function) between K_{i}, q.

Common choice: $\rho\left(K_{i}, q\right)=\left\langle K_{i}, q\right\rangle$

Approximating dict()

$$
K \in \mathbb{R}^{n \times k} \quad V \in \mathbb{R}^{n \times v} \quad q \in \mathbb{R}^{k}
$$

Solution

$1 \quad w=\operatorname{softmax}(\mathrm{Kq})$
$2 \mathrm{~d}[q]=w^{T} V$

Let $\rho\left(K_{i}, q\right) \in \mathbb{R}$ be some measure of similarity (compatibility function) between K_{i}, q.

Common choice: $\rho\left(K_{i}, q\right)=\left\langle K_{i}, q\right\rangle$

Scalar Product Normalization

Assume that all $q, K_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$.

Scalar Product Normalization

Assume that all $q, K_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$. What will be distribution of $\left\langle q, K_{i}\right\rangle=\sum_{j} q_{j} K_{i j} \sim ?!?$

Scalar Product Normalization

Assume that all $q, K_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$.
What will be distribution of $\left\langle q, K_{i}\right\rangle=\sum_{j} q_{j} K_{i j} \sim$?!?
$\mathbb{E} \sum^{k} q_{j} K_{i j}=\sum^{k} \mathbb{E} q_{j} K_{i j}=\{$ independence $\}=\sum^{k} \mathbb{E} q_{j} \mathbb{E} K_{i j}=\sum^{k} 0=0$

Scalar Product Normalization

Assume that all $q, K_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$.
What will be distribution of $\left\langle q, K_{i}\right\rangle=\sum_{j} q_{j} K_{i j} \sim ?!?$
$\mathbb{E} \sum^{k} q_{j} K_{i j}=\sum^{k} \mathbb{E} q_{j} K_{i j}=\{$ independence $\}=\sum^{k} \mathbb{E} q_{j} \mathbb{E} K_{i j}=\sum^{k} 0=0$
$\begin{aligned} \mathbb{D} \sum^{k} q_{j} K_{i j} & =\{\text { independence }\}=\sum^{k} \mathbb{D} q_{j} K_{i j}= \\ & =\left\{\begin{array}{c}\text { independence } \\ \text { zero expectation }\end{array}\right\}=\sum \mathbb{D} q_{j} \mathbb{D} K_{i j}=\sum^{k} 1=k\end{aligned}$

Scalar Product Normalization

Assume that all $q, K_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$.
What will be distribution of $\left\langle q, K_{i}\right\rangle=\sum_{j} q_{j} K_{i j} \sim$?!?
$\mathbb{E} \sum^{k} q_{j} K_{i j}=\sum^{k} \mathbb{E} q_{j} K_{i j}=\{$ independence $\}=\sum^{k} \mathbb{E} q_{j} \mathbb{E} K_{i j}=\sum^{k} 0=0$
$\begin{aligned} \mathbb{D} \sum^{k} q_{j} K_{i j} & =\{\text { independence }\}=\sum^{k} \mathbb{D} q_{j} K_{i j}= \\ & =\left\{\begin{array}{c}\text { independence } \\ \text { zero expectation }\end{array}\right\}=\sum \mathbb{D} q_{j} \mathbb{D} K_{i j}=\sum^{k} 1=k\end{aligned}$
Similarity metric normalisation:

$$
\rho\left(K_{i}, q\right)=\frac{\left\langle K_{i}, q\right\rangle}{\sqrt{k}}
$$

Scalar Product Normalization

Assume that all $q, K_{i} \sim \mathcal{N}\left(0, I_{k \times k}\right)$.
What will be distribution of $\left\langle q, K_{i}\right\rangle=\sum_{j} q_{j} K_{i j} \sim$?!?
$\mathbb{E} \sum^{k} q_{j} K_{i j}=\sum^{k} \mathbb{E} q_{j} K_{i j}=\{$ independence $\}=\sum^{k} \mathbb{E} q_{j} \mathbb{E} K_{i j}=\sum^{k} 0=0$
THE MANGA GUIDE TO
$\sum^{k} \sum^{k}$ STATISTICS
COMICS
INSIDEI
 $=\left\{\begin{array}{c}\text { independence } \\ \text { zero expectation }\end{array}\right\}=\sum^{k} \mathbb{D} q_{j} \mathbb{D} K_{i j}$

Similarity metric normalisation:

$$
\rho\left(K_{i}, q\right)=\frac{\left\langle K_{i}, q\right\rangle}{\sqrt{k}}
$$

Attention

$$
\text { input: } K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}
$$

Attention

 input: $K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$Get attention weights matrix:

$$
W=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}
$$

Attention

 input: $K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$Get attention weights matrix:

$$
W=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}
$$

output: $W V \in \mathbb{R}^{b \times v}$

Attention

 input: $K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$Get attention weights matrix:

$$
W=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}
$$

output: $W V \in \mathbb{R}^{b \times v}$
parameters: :(

Attention

 input: $K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$Get attention weights matrix:

$$
W=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}
$$

output: $W V \in \mathbb{R}^{b \times v}$
parameters: :(
Today...

$$
K \equiv V
$$

Attention

input: $K \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times v}, Q \in \mathbb{R}^{b \times k}$

Get attention weights matrix:

$$
W=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{k}}, \operatorname{dim}=1\right) \in \mathbb{R}^{b \times n}
$$

output: $W V \in \mathbb{R}^{b \times v}$
parameters: :(
Today...

$$
K \equiv V
$$

Attention intuition

Attention intuition

Attention intuition

Attention intuition

Section 3

Multi-Head Attention

Metric parametrization

Metric parametrization

Multi-Head Attention

Multi-Head Attention

Multi-Head Attention

Self-attention

Self-attention

$$
Q \equiv K \equiv V
$$

Self-attention

Self-attention

$$
Q \equiv K \equiv V
$$

Self-attention

Self-attention

$$
Q \equiv K \equiv V
$$

! not all multi-head attention blocks in Transformer are self-attention!

Section 4

Attention is All You Need

Positional Embeddings

Features

Encoder

Decoder

Decoder

Decoder

Decoder

More sources about Transformer

- Animation of intuition:

■ Illustrated Transformer https:
//jalammar.github.io/illustrated-transformer/

- OpenAI Blog
https://ai.googleblog.com/2017/08/
transformer-novel-neural-network.html
- MIPT Lecture (RUS)
https://www. youtube.com/watch?v=Bg8Y5q10iP0

Section 5

BERT, GPT-2, ...

BERT: pre-training

BERT: fine-tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

GPT-2 (Generative Pre-Training)

- language model based on masked multi-head self-attention
- with 1.5 billions of parameters (!)
- (rumors) 2048 TPU days to train
- which is able to generate pretty realistic texts

GPT-2 (Generative Pre-Training)

- language model based on masked multi-head self-attention
- with 1.5 billions of parameters (!)

■ (rumors) 2048 TPU days to train

- which is able to generate pretty realistic texts

How to apply this to music?

How to apply this to music?

MIDI Music Representation

Each note has:

■ beginning (milliseconds)

- end (milliseconds)
- pitch (key): 128 possible options
- velocity (128 possible options; but we can take smaller grid)

Notes is Language

Notes is Language


```
SET_VELOCITY<80>, NOTE_ON<60>
TIME_SHIFT<500>, NOTE_ON<64>
TIME_SHIFT<500>, NOTE_ON<67>
TIME_SHIFT<1000>, NOTE_OFF<60>, NOTE_OFE<64>,
NOTE_OFF<67>
TIME_SHIFT<500>, SET_VELOCITY<100>, NOTE_ON<65>
TIME_SHIFT<500>, NOTE_OFF<65>
```


Looking for more details...

- Generalized Language Modeling (BERT section) https://lilianweng.github.io/lil-log/2019/01/31/ generalized-language-models.html\#bert
- Illustrated GPT
http://jalammar.github.io/illustrated-gpt2/
- Transformer-XL
https://arxiv.org/abs/1901.02860
- Music Transformer https://magenta.tensorflow.org/music-transformer
- Generated music visualisation:

