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Section 1

Gaussian Process
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Gaussian Process

Definition
A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

f ∼ GP(m(·), k(·, ·))⇔ ∀t1, . . . , tn (f (t1), . . . , f (tn)) ∼ N (µ,K ),

where µ = (m(t1), . . . ,m(tn))T , K ∈ Rn×n, Kij = k(ti , tj).
m : R→ R is called the mean function of the gaussian process f .
k : R× R→ R+ is the covariance function of f .

Mean and covariance functions completely determine a gaussian process.
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Example
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Figure: Examples of gaussian processes
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Covariance functions
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Figure: Squared-exponential and Matern covariance functions
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Section 2

Gaussian Process Regression
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Notation

{(xi , fi )|i = 1, . . . , n} — dataset, considered to be generated from a
Gaussian process f ∼ GP(m(·), k(·, ·)), let x ∈ Rd .
X ∈ Rn×d — the matrix, comprised of data points x1, . . . , xn.
f ∈ Rn — the vector of target values f1, . . . , fn.
y ∈ Rn — the noisy version of f : y ∼ N (y |f , σ2

nI )

X∗ ∈ Rk×d — new (test) data points.
f∗ ∈ Rk — the desired vector of process values at new data points X∗.
K (X ,X ) ∈ Rn×n — the matrix, comprised of pairvise values of the
covariance function k(·, ·) of the underlying process:

K (X ,X )ij = k(xi , xj).

K (X ,X∗) ∈ Rn×k — the matrix, defined similarly to the K (X ,X ).
K (X∗,X ) = K (X ,X∗)T .
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Problem statement

The model is as follows. f is a vector of unobserved samples from a
gaussian process GP(m(·), k(·, ·)) at data points xi and y is it’s noisy
version we observe.

f ∼ N (m(X ),K (X ,X )),

y = f + ε, ε ∼ N (0, σ2
nI ).

What we want to obtain is the predictive distribution at a set of new data
points X∗

p(f∗|X∗,X , y).

We put the following prior on our model: the data is generated from a
zero-mean gaussian process with covariance function k(·, ·):

f ∼ GP(0, k(·, ·)).

This prior is not limiting, because zero-mean prior does not imply a
zero-mean predictive distribution.
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GP-Regression

The joint distribution for the process values f and f∗ is given by[
f
f∗

]
∼ N

(
0,
[

K (X ,X ) K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

])
.

We slightly change the covariance matrix to obtain the joint distribution for
y and f∗. [

y
f∗

]
∼ N

(
0,
[
K (X ,X ) + σ2

nI K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

])
.
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Predictive distribution

Conditioning the joint distribution, we obtain the predictive

f∗|y ∼ N (m̂, K̂ ),

E[f∗|y ] = m̂ = K (X∗,X )(K (X ,X ) + σ2
nI )

−1y ,

cov(f∗|y) = K̂ = K (X∗,X∗)− K (X∗,X )(K (X ,X ) + σ2
nI )

−1K (X ,X∗).
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Example
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As we can see, the model does not explain the data very well. In order to
deal with this problem, we can tweak the covariance function. The
covariance functions usualy have a set of parameters, which we will refer to
as covariance (or kernel) hyper-parameters. Varying these parameters, we
can find a better model for the data.
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Marginal likelihood

In order to find the best set of kernel hyper-parameters, we maximize the
marginal likelihood with respect to them. In the case of gaussian process
regression, this likelihood is given by

log p(y) = log
∫

p(y |f )p(f )df = logN (y |0,K (X ,X ) + σ2
nI ) =

= −1
2
yT (K (X ,X ) + σ2

nI )
−1y − 1

2
log |K (X ,X ) + σ2

nI | −
n

2
log 2π.

If k(·, ·) is a differentiable function of it’s hyper-parameters (which is
usually true), p(y) also is, and can be maximized with gradient-based
optimization methods.
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Example
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Figure: Predictive distribution before and after hyper-parameter adaptation

As we can see, after adaptation of kernel hyper-parameters, the method
does a better job, explaining the data.
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Computational Complexity

The predictive mean and covariance are given by

E[f∗|y ] = m̂ = K (X∗,X )(K (X ,X ) + σ2
nI )

−1y ,

cov(f∗|y) = K̂ = K (X∗,X∗)− K (X∗,X )(K (X ,X ) + σ2
nI )

−1K (X ,X∗).

Marginal likelihood is given by

log p(y) = −1
2
yT (K (X ,X ) + σ2

nI )
−1y − 1

2
log |K (X ,X ) + σ2

nI | −
n

2
log 2π.

The computational complexity of the gaussian process regression is
determined by the complexity of inversing the K (X ,X ) matrix and
computing the detrminant of K (X ,X ) + σ2

nI , and thus scales as O(n3).
This complexity makes the method inapplicable to big problems and thus
approximate approaches are needed.
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Section 3

Inducing Inputs
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Inducing Inputs

The graphical model for the gaussian process regression looks like this.

f1 f2 fn

y1 y2 yn. . .
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Inducing Inputs

Now we slightly change the model, adding a set of latent variables u.

f1 f2 fn

y1 y2 yn. . .

u

The joint probability of latent and observable variables now is given by

p(y , f , u) = p(y |f )p(f |u)p(u).
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Inducing Inputs
The latent variables u are referred to as inducing inputs. The intuition
behind them is that they are considered as the values of the process at new
data points z1, . . . , zm. We will have to introduce some more notation now.

Zm ∈ Rm×d — the matrix, comprised of the coordinates of the
inducing inputs inputs z1, . . . , zm.
Knn = K (X ,X )

Kmm = K (Zm,Zm)

Kmn = K (Zm,X )

Knm = K (X ,Zm) = KT
mn

As ui are considered to be generated from the same gaussian process, as fi ,
we have the following formulas.

p(u) = N (u|0,Kmm),

p(f |u) = N (f |KnmK
−1
mmu, K̃ ),

where K̃ = Knn − KnmK
−1
mmKmn.
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Evidence Lower Bound
The standard variational lower bound for the marginal likelihood p(y) for
our augmented model is

log p(y) ≥ Eq(u,f ) log
p(y , u, f )

q(u, f )
= Eq(u,f ) log p(y |f )−KL (q(u, f ) || p(u, f )) .

Our model implies Eq(u,f ) log p(y |f ) = Eq(f ) log p(y |f ), where q(f ) is the
marginal of q(u, f ).
We will consider the variational distributions of the following form:

q(u, f ) = p(f |u)q(u),

where q(u) ∼ N (u|µ,Σ). This implies q(f )

q(f ) =

∫
p(u|f )q(u)du =

N (f |KnmK
−1
mmµ,Knn + KnmK

−1
mm(Σ− Kmm)K−1

mmKmn).
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Evidence Lower Bound

Now, consider the KL-divergence in the lower bound we’ve devised.

KL (q(u, f ) || p(u, f )) = KL (q(u)p(f |u) || p(u)p(f |u)) = KL (q(u) || p(u)) .

Finally, the lower bound is

log p(y) ≥ Eq(f ) log p(y |f )− KL (q(u) || p(u)) =

=
n∑

i=1

Eq(fi ) log p(yi |fi )− KL (q(u) || p(u)) .

Note, that although, we’ve devised this bound for the regression problem,
we never used the fact, that we are actually performing regression. This
bound holds for binary classification problem as well.
However, in the case of GP-regression, the right-hand side of the bound
can be computed analytically in a closed form.
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SVI method

Substituting the normal distributions q(u), p(u), q(f ) and p(y |f ) back into
the lower bound, we obtain the following inequality.

log p(y) ≥
n∑

i=1

(
logN (yi |kTi K−1

mmµ, σ
2
n)− 1

2σ2
n

K̃ii −
1
2
tr(ΣΛi )

)
−

−1
2

(
log
|Kmm|
|Σ|

−m + tr(K−1
mmΣ) + µTK−1

mmµ

)
,

where Λi = 1
σ2
n
K−1
mmkik

T
i K−1

mm, and ki is the i-th column of the matrix Kmn.
This lower can be maximized with respect to kernel hyper-parameters and
variational parameters µ,Σ using the stochastic optimization techniques.
The method was proposed at [Hensman et al., 2013]. The authors suggest
using the stochastic gradient descent with natural gradients for variational
parameters. The complexity of computing a stochastic update for one
object is O(m3).
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Titsias’s method
The lower bound we devised can also be maximized with respect to
variational parameters analytically, which was suggested in [Titsias, 2009].
The optimal distribution is q∗(u) ∼ N (u|û,Λ−1), where

Λ =
1
σ2
n

K−1
mmKmnKnmK

−1
mm + K−1

mm,

û =
1
σ2
n

Λ−1K−1
mmKmny .

Substituting this distribution back to the ELBO, we obtain

log p(y) ≥ −1
2

(
n log 2π + log |B|+ yTB−1y +

1
σ2
n

tr(K̃ )

)
,

where B = σ2
nI + KnmK

−1
mmKmn. The complexity of computing the optimal

distribution parameters, the lower bound and it’s gradients is O(nm2).
However, we can not apply stochastic optimization in this case.
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Example
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Figure: Example of two implementations of the Titsias’s method. The vi method
maximizes the lower bound with respect to the positions of inducing inputs, while
the means method just uses the K-means cluster centers as inducing point
positions.
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Section 4

Experiments
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Experiments
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Figure: Comparison of the Titsias’s method with and without optimization with
respect to inducing point positions

As we can see, for these small problems optimization with respect to
positions of inducing points does not affect the quality too much. However,
this optimization dramaticly increases the number of optimized parameters,
and makes the optimization much harder. Thus, we didn’t perform this
optimization in further experiments.
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Experiments
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Figure: The dependence between quality and number of inducing points for
slightly bigger datasets
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Experiments
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Figure: Comparison of variaous optimization methods for svi lower bound
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Experiments
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