
Министерство образования и науки Российской Федерации
Московский физико-технический институт (государственный

университет)
Факультет управления и прикладной математики

Вычислительный центр им. А. А. Дородницына РАН
Кафедра "Интеллектуальные системы"

03.04.01 Прикладные математика и физика

Сопоставление изображений при условии
значительных смещений и изменений среды

Автор: .
Швец Михаил Юрьевич

Научный руководитель: .
Лемпицкий Виктор Сергеевич

Профессор, к. ф.-м. н.
Научный руководитель: .

Lorenzo Torresani
Associate Professor, PhD

Москва

Июнь 2017

Аннотация

Точная оценка положения платформы в пространстве является трудной задачей авто-
номного вождения. Несмотря на то, что на борту установлены датчики GPS, во многих
случаях они не обеспечивают точную локализацию. Тем не менее, приближенное поло-
жение может быть использовано для составления запроса к базе данных и получения
изображения, отображающего ту же сцену, которая в текущий момент наблюдается с
камеры, установленной на платформе. Таким образом, формируется пара изображений,
которые, вообще говоря, могут иметь существенные различия, несмотря на то, что со-
держат одну и ту же сцену. Во-первых, смещение камеры на несколько метров приводит
к большим смещениям объектов и фона в изображениях, что приводит к невозмож-
ности использования методов локального поиска. Во-вторых, два изображения могут
происходить из разных точек времени, внося не только изменения освещенности, но
и значительные изменения окружающей среды, такие как снег на тротуарах, здания,
построенные или разрушенные на втором снимке по сравнению с первым, движущиеся
объекты, присутствующие только на одном из изображений. Мы формируем такие пары
изображений, формулируем и предлагаем методы решения нескольких задач сопостав-
ления изображений. В работе представлены методы компьютерного зрения, основанные
на глубоком обучении, позволяющие сопоставлять пары изображений и уточнять поло-
жение автономной платформы.

Основная часть этой работы посвящена проблеме оценки поточечных соответствий
между двумя изображениями. Мы предлагаем несколько архитектур нейронных сетей.
Признаковые представления, которые извлекаются из обоих изображений, включают в
себя как глобальный контекст, так и локальную информацию, необходимую для пред-
сказания целевых величин. Мы изучаем эффект деформации признаковых представ-
лений, в отличие от классической деформации исходных изображений и показываем
преимущества такого подхода. Большие синтетические коллекции используются для
обучения моделей. Дальнейшая тонкая настройка выполняется для сохранения этих
знаний и адаптации к изображениям из реального мира. В работе получены резуль-
таты на парах изображений из одного проезда (при одинаковых погодных условиях
и условиях освещения), а также на парах из разных проездов (при существенно раз-
личных погодных условиях, например, разных временах года). По аналогии с задачей
выделения объектов на изображении, мы дискретизируем пространство векторов соот-
ветствий, предсказывая метку дискретного множества классов совместно с уточнением
предсказания внутри выбранного класса. Кроме того, предлагается модель для про-
гнозирования вида сцены при различных условиях, кодирующая эти условия вектором
небольшой размерности. Полученное векторное пространство используется для удале-
ния сезонной составляющей. Основываясь на этих исследованиях, мы показываем, что
решение промежуточных задач позволяет предсказывать положение платформы точ-
нее, чем в случае непосредственного прогнозирования. Мы оцениваем геометрическое
смещение в сценариях с двумя и тремя степенями свободы. Мы демонстрируем приме-
нимость разработанных моделей и оцениваем их эффективность на хорошо известных
базах данных оптического потока, дополнительно расширяя результаты до сложных
межсезонных данных.

2

Оглавление

1 Введение 7

2 Обзор области 11

2.1 Localization . 11

2.2 Neural networks . 12

2.3 Predicting appearance . 13

2.4 Datasets . 14

3 Методы 16

3.1 Notations . 16

3.2 Neural Networks . 17

3.2.1 Deep feed-forward networks . 17

3.2.2 Convolutions . 17

3.2.3 Fully convolutional architectures . 18

3.2.4 Skip-connections . 20

3.3 Projective geometry . 21

3.3.1 Homogeneous coordinates . 21

3.3.2 Camera model . 22

3.3.3 Camera pose . 23

3.3.4 Epipolar geometry . 24

3.4 Correspondence field . 25

3.5 Correspondence estimation from a pair of images 27

3.5.1 Two-stream network . 28

3

3.5.2 Skip-connections . 29

3.5.3 Coarse to fine approach . 30

3.5.4 Warping . 31

3.5.5 Loss model . 31

3.6 Cross-seasonal prediction . 33

3.6.1 Modeling conditions and predicting appearance 33

3.6.2 Fusing conditions model with correspondence estimation 35

3.7 Displacement estimation . 37

4 Эксперименты 39

4.1 Training schedules . 39

4.1.1 Datasets . 39

4.1.2 Pre-training with ground truth warping 41

4.2 Correspondence prediction . 42

4.2.1 Comparison . 42

4.2.2 Warping layers effect . 43

4.2.3 Visualization . 44

4.2.4 Endpoint errors . 45

4.3 Appearance prediction . 46

4.4 Geometrical displacement estimation . 47

5 Заключение 49

Литература 51

Приложение A 56

Приложение B 66

B.1 Data Augmentation . 66

B.2 Flow as classification problem . 69

4

Список иллюстраций

1-1 Examples of problems that are solved in our work 8

3-1 Receptive field of CNN . 20

3-2 Pinhole camera model . 22

3-3 Epipolar constraints . 25

3-4 Correspondence field color coding . 26

3-5 FlowMatchNet architecture . 30

3-6 WarpNet architecture . 32

3-7 Architecture modeling c(X) . 34

3-8 Image feature extractor f(X) . 35

3-9 CondNet architecture . 36

4-1 Sampling from SYNTHIA dataset . 41

4-2 Pre-training methods convergence . 42

4-3 Violing plots for FlowMatch and WarpNet 43

A-1 Distribution of pixel displacement magnitude on SYNTHIA 56

A-2 Comparison of FlowMatch and WarpNet . 57

A-3 WarpNet predictions on NCLT . 59

A-4 NCLT matches with WarpNet . 60

A-5 KITTI matches with WarpNet . 61

A-6 t-SNE visualization of conditions vectors on SYNTHIA 62

A-7 CondNet results on SYNTHIA . 63

A-8 CondNet results on Transient Attributes Database 64

5

A-9 CondNet model in correspondence prediction 65

B-1 Overfitting to data . 66

B-2 FlowClassifNet visualization . 71

Список таблиц

4.1 Comparison of WarpNet with iterative architecture on SYNTHIAsame
small 45

4.2 Endpoint average error results . 46

4.3 CondNet mean absolute difference error . 47

4.4 CondNet effect on correspondence estimation 47

4.5 Displacement estimation results . 48

B.1 FlowClassifNet results . 70

6

Глава 1

Введение

Vision-based image matching, place recognition and localization are becoming increasingly

viable components of navigation systems for autonomous robots and driving scenarios.

However, attaining robustness to large objects displacements and variations in appearances

such as weather, season, time of day and camera viewpoint remains a major challenge.

First of all, pixels that describe the same object may be in distant parts of an image

plane for two cameras that capture the same scene from different positions, which would

make methods that analyze local neighbourhoods futile. Also, on a pixel-wise level objects

may look drastically different: pavement would be gray in summer but white from snow in

winter; a wall would be red in light but brown in shadow. On the other hand, localization

using monocular vision and GPS positioning is a prospective task, as required sensors are

cheap. We stress that GPS measurements alone are not sufficient because of measurement

coarseness, especially in urban settings with high buildings and massive concrete structures,

quarries, etc.

In this thesis we present a range of methods, making a step towards cross-appearance

image matching, relative motion understanding and localization refinement for an autonomous

vehicle with visual information obtained from a single camera (see examples of several

problems being solved in Figure 1-1). We assume that the vehicle follows only those routes,

which have been traversed before, and that a database of images with precise coordinates is

created and stored. This database allows to retrieve an image and solve a problem of finding

camera pose relative to this image afterwards. For example, knowing GPS coordinates one can

7

retrieve nearest image from the database and estimate the geometric displacement between

two single-camera images: the one currently observed by the platform and the one from the

database.

Dense correspondence estimation: given a
pair of images, a model predicts a map
of 2D displacement vectors of individual
pixels

Appearance transfer: given an image, a
model predicts appearance of the same
scene under different conditions from the
same point of view

Camera displacement estimation: given a pair of images, a model predicts second
camera pose relative to first camera

Рис. 1-1: Examples of problems that are solved in our work

The problem of finding relative camera pose between image frames is traditionally solved

through sparse correspondence estimation between sets of interest points. Usually, image

pixel is assumed to be an interest point if it represents edge, corner or other local singularity.

Manually designed vector of features (usually based on analyzing image gradients in a local

neighbourhood) is extracted to describe each interest point. Then, matching algorithm is

developed to align interest points sets between images and finally incorrect matches are

removed after checking additional constraints. Executing this approach for cross-appearance

image pairs yields matching results that are usually insufficient for localization refinement.

Same approach is applied when reconstructing structure from motion and performing alignment

8

between 3D point clouds that gives more precise results. Unfortunately, it is too time-

consuming, especially for self-driving and robotics scenarios.

Single-shot estimation is an important task because of several reasons. Firstly, real-time

performance is strictly required for driving scenarios, where huge amounts of information

are processed in every moment of time. Secondly, single-shot target prediction gives strong

priors, which can be further incorporated into systems that account for temporal information.

For example, it is possible to perform Bayesian inference on the graph of platform positions

given single-shot estimations. Finally, it is important for making a cold start, for instance

when the platform is lost or system reboot takes place. In out work we propose several deep

learning based single-shot prediction models.

Deep learning techniques allow to directly analyze raw images, circumventing steps of

interest points detection and hand-crafting features for these points. Deep convolutional

neural networks have recently been proven to succeed in various classification and regression

tasks. Posing localization task in form of a regression problem is a straightforward approach

to try. However, 3D motion and rules of projective geometry are challenging to learn in

an end-to-end fashion without additional supervision. Revisiting traditional methods of

localization, which are described above, we aim to predict correspondences between individual

pixels to further enable relative pose prediction. We go from sparse estimation to dense

prediction of target displacement vector in each pixel of the image.

Dense target prediction is an essence of fully convolutional neural networks. These models

are capable of incorporating global context, predicting target values in each pixel. Successfully

used for single-image prediction tasks (semantic segmentation, edges estimation, etc.), fully

convolutional models are now explored in application to problems that include image pairs

and sequences analysis (optical flow, odometry, etc.).

We adapt fully convolutional models for cross-appearance correspondence estimation

and appearance transfer, providing pairs of images as an input and elaborating on how

to extract features, fuse information from two images, preserve fine-grained information

during global context prediction and deal with ambiguities. We pose traditional notion of

image warping in context of convolutional neural networks to deform tensor representations

of images, producing more precise estimates. Upon pixel-wise prediction models we build

9

another model to estimate relative geometrical displacements between cameras and show

localization refinement.

Computational experiments are carried out firstly on synthetic driving data, after which

the obtained knowledge is transferred to real-world data for driving scenario optical flow

prediction and for cross-appearance robot localization.

The structure of the rest of this thesis goes as follows:

• Chapter 2 provides an overview of related works in the field. We describe recent progress

of deep learning methods and links to geometrical and matching problems. We take

a look at traditional optical flow pipelines and methods of camera pose estimation.

Appearance transfer problems are also discussed. Chapter 2 ends with publicly available

datasets analysis.

• Chapter 3 gives and overview of existing methods and describes the novelty of our work.

Firstly, we describe neural networks concepts and projective geometry notions. Then,

correspondence prediction problem is stated and a pipeline is drawn on high level.

The following sections introduce details, improvements and changes to this general

pipeline. Then, we show how to restate the problem to classification with further

refinement step. We address problems of appearance prediction and show how it can

be used for improving quality of correspondence prediction model. Finally, geometrical

displacement estimation is build upon the combination of these methods.

• Computational experiments are described in Chapter 4. The evaluation is performed

on synthetic and real datasets. We provide quantitative measures of endpoint average

errors for predicted correspondence fields, Euclidean norm errors in 3D space for

displacement problems and in the space of RGB for appearance transfer problems.

Additionally we show the qualitative results and provide useful insights.

• Chapter 5 summarizes the work and discusses potentials for future work.

10

Глава 2

Обзор области

Challenges for outdoor image-based camera motion understanding include large displacements

of objects [9, 49, 32] and large environmental changes, including illumination, weather,

seasons, time of day [5]. Appearance of the scene under these assumptions may differ drastically.

Large displacements and large environmental changes are usually addressed separately:

optical flow and odometry papers assume constant environmental conditions, while appearance

transfer papers [30, 22] assume fixed camera position. The works addressing both challenges

simultaneously [32] provide coarse matching accuracy, which is insufficient for localization

refinement.

2.1 Localization

Appearance-based localization across seasons has been considered in [6] from metric point of

view with use of stereo imaging. Basing on stereo pair streams authors in [12] propose to look

at "experiences"about places to construct a "plastic map"to deal with environmental changes

instead of keeping conventional map. Nevertheless, these approaches only deal with discrete

grid, providing limited localization accuracy and requiring a search over environment map. In

this thesis we propose single-shot methods for image matching and localization from a pair

of images to deliver localization refinement. Cross-appearance single-shot correspondence

estimation methods were developed to match different instances of one object [32, 51].

Although qualitatively impressive alignment is achieved in these works, average endpoint

11

errors are much higher than required in driving scenarios. We aim to reduce the errors to

make consequent precise camera localization feasible.

Typically localization problem is being addressed with simultaneous localization and

mapping (SLAM) methods, in particular the monocular ones [38]. Those mainly include

matching features (usually hand-crafted) of some key points [50]. Traditional pipeline for key

points correspondence estimation has several steps and establishes only sparse matches, as

it is done in [34]. Firstly, key points are extracted from each image. These are locally-special

points, for example those having sharp image gradient change. Secondly, these points are

encoded into vectors, which are constructed based on local neighbourhood analysis. Finally,

matching scheme is introduced between two obtained sparse sets to establish correspondences

and incorrect matches are eliminated based on local geometrical constraints. With respect

to epipolar constraints, essential and fundamental matrices are robustly estimated as in [50]

to gain knowledge about camera motion. Another matching approach is proposed in [49],

linking deep learning methods with traditional patch-based sparse correspondence methods.

2.2 Neural networks

Recent progress of deep neural networks [28, 47] enables us to move away from typical SLAM

pipeline, as modern architectures are capable of learning internal features representation

without need to choose any markers and generate hand-crafted features. Deep neural networks

have already been trained on localization tasks like loop closure [15], place recognition [46]

etc. Convolutional features for place recognition have also been examined in [45].

Convolutional neural network approach was used to deal with pairs of images in [1] by

training a model in an end-to-end fashion to predict 6DOF relative camera displacement.

Here the problem was posed as a classification task with coarse discretization of the space

into bins. Optical flow regression is handled in [14], which inspires our correspondence

prediction methods. We go beyond this approach, predicting correspondences for driving

scenarios between seasons of the year.

Cross-seasonal matching is usually addressed in landmark recognition [11] and image

retrieval [3], which provides coarse localization, or in structure from motion [7], where 3D

12

structure is reconstructed and kept in memory, being slow and requiring a lot of computational

resources. Structure from motion approach is leveraged for global image-based localizaition

in [37, 31]. These methods are also usually based on traditional pipeline of extracting special

feature descriptors and matching them with point cloud. Unlike [2], in our work we do not

assume landmarks to be explicitly specified, but want to build the internal representation.

Impressive localization results were achieved in [26], where the authors consider a very

challenging task of directly regressing six degree of freedom (6dof) camera position from a

single image with a CNN. In [25] Bayesian extension of that system is provided.

Probabilistic framework for navigation tasks was also introduced in [13]. Direct regression

approach was also tried in [43], where RGBD input was required and regression forests were

used for indoor scenes. Same authors have published a sequence of other papers on the topic

[48, 17, 19], using RGBD input and following machine learning methods: random forests,

RANSAC, randomized ferns. Basing on those results another group has built a system to

estimate a pose of an object in RGBD image using CNN to obtain value of energy [8].

Monocular systems have also been developed, but mainly for indoor environment and with

dependence on markers [29].

2.3 Predicting appearance

Appearance transfer is performed in [30] through local linear transforms for each pixel, where

transforms dictionary is learned in a supervised fashion. Separate dictionary is learned for

each season in [39] basing on superpixels.

Our idea to combine features extracted from an image with a low-dimensional vector

resembles similar idea in [52]. In this work, the appearance of the scene is predicted from a

point of view different from the reference camera position. The conditions are assumed to

be exactly the same, which leads to leveraging natural idea of image warping by predicting

target flow field. On the contrary, we predict the appearance of the scene from the same

point of view under different conditions. Moreover, in our setting these small-dimensional

vectors corresponding to target image are unknown, so we jointly predict those together with

the image appearance. No supervisory signal is used during training except raw image pairs.

13

2.4 Datasets

Optical flow estimation is a traditional research field with several popular publicly available

datasets. In this thesis we use KITTI 2012 [16] and KITTI 2015 [36] datasets, which provide

around two hundred training pairs each together with ground truth optical flow field. FlyingChairs

dataset [14] consists of 22872 synthetic images of chairs rendered from 3D models and places

on randomly selected background from real photos.

To our best knowledge, there are no established benchmarks for cross-seasonal outdoor

dense correspondence prediction that would provide image pairs with reliable ground truth

for correspondence fields and relative poses. In our work, we heavily use SYNTHIA [42],

a synthetic driving scenario dataset, which provides rendered video sequences at 5 frames

per second frequency. These sequences feature a variety of illumination and environmental

changes. There are a total of 7 sequences, each coming from a run through a certain

environment (highway, megapolis, small European town). Within each sequence several runs

are rendered under different environmental conditions (fall, winter, summer, rain, dawn,

night, sunset etc.). The virtual car has 8 cameras, which provide forward, backward, left and

right views from two points. One can think of that as of stereo omnidirectional cameras, for

which 8 undistorted views are already provided for simplicity. Together with the images, rich

ground truth is provided: dense depth map (range from 1.5 to 50 meters) for each image,

camera pose and intrinsic parameters. Depth information together with camera pose allows

to establish dense correspondences for a pair of images that share field of view. Notice that

is it possible in cases when a pair comes either from the same run or from a different run,

because ground truth poses are provided in global coordinates, which are consistent across

all runs and all sequences and allow to re-project pixels from one image onto the plane of

another image.

The required ground truth information is easily extracted from computer simulators

and game engines, but it is much harder in real world. As discussed above, establishing

correspondences in outdoor scenes directly requires either having expensive precise sensors

or immense human labour. Depth information can be obtained from LIDAR sensors. LIDAR

data is usually present in driving datasets (KITTI [16, 36], The Oxford RobotCar Dataset

14

[35], New College Dataset [44]), but accurate projection also requires reliable camera pose

information. We have already discussed that GPS sensors are not reliable enough to provide

target poses. Inertial measurement units (IMUs) are used to refine relative pose of a pair

from one run, given that the car has travelled small distance (usually less than 1km), but

these sensors are useless when establishing relative pose across different runs. In Michigan

North Campus Long-Term [10] dataset (referred to as NCLT further) large SLAM solution

is pre-processed, having matching constraints from LIDAR scans across all runs and using

high-accuracy RTK GPS. The dataset provides raw images from omni-directional camera,

undistortion maps, absolute body frame pose, relative transformations between body frame

and all sensors, LIDAR hits (which we use to construct sparse depth map).

Huge database of outdoor scenes from web-cameras (more than a billion samples and

growing) was made available in [23], but the images are usually poor and not aligned,

which makes it impossible to use it directly for training in our settings. Authors of [30]

processed images from 101 of these web-cameras, carefully aligning all images from each

camera and ensuring diversity of the images. This set is released publicly as the Transient

Attributes Database, containing ground truth information about 40 attributes, grouped

under 5 categories (’lighting’, ’weather’, ’seasons’, ’subjective impression’ and ’additional

attributes’). We show the performance of our appearance prediction model on this dataset.

15

Глава 3

Методы

3.1 Notations

Here we introduce notations which are used throughout the rest of the work.

X = {0, . . . , 255}H×W×3 denotes the space of RGB images. If not specified explicitly,

X, Y ∈ X denote images.H,W are image height and width. F is a space of three-dimensional

tensors (X ⊂ F). We refer to first two dimensions that enumerate pixels, as spatial dimensions

and last dimension that enumerates channels, as features dimension or channels dimension.

D or d is a number of channels. F ∈ F denotes vector correspondence field of size H×W×2,

while M denotes matchability matrix of size H ×W (definitions are provided in 3.4). W

refers to four-dimensional tensor of convolutional parameters of size K×K×Din×Dout (see

3.2.2). Here K is kernel size, Din and Dout is the number of dimensions in layer’s input and

output.

Pixels (image plane integer coordinates) are indexed with i, j, while real-valued coordinates

in camera local reference system are indexed with x, y, z. In section 3.3, where geometrical

considerations are outlined, X, Y, Z,D, d are also used to denote coordinates (euclidean and

homogeneous).

We use upper and lower indices in notations to index a tensor (e.g. F 1
i,j denotes the value

of correspondence field in pixel (i, j) in channel 1, which is x-displacement of this pixel) or

simply for convenience reasons (e.g. Dout denotes number of channels in a layer’s output

tensor).

16

3.2 Neural Networks

In our work target functions are modeled with neural networks. This section describes main

notions of neural networks, such as convolutional layers, receptive fields, skip-connections,

etc.

3.2.1 Deep feed-forward networks

Dense feed-forward neural network is initially defined to be superposition of linear functions

and nonlinearities. An instance that applies one linear function and one nonlinearity is

called layer. Last layer is called output layer, while other layers are called hidden layers.

For example, neural network with one hidden layer can be written down as a superposition

f(X) = tanh(W2 tanh(W1X + b1) + b2). (3.1)

In this formula X is an input vector, W1, W2 (matrices), b1, b2 (vectors) are parameters

of a linear function, while tanh is a nonlinearity function. For simplicity, additive constants b

are usually absent in notations after one extra feature is introduces to X which always equals

1. Nonlinearities are called activation functions. Notation (3.1) allows constructing a neural

network with arbitrary number of layers and arbitrary activation function. Neural network

is called deep when having many layers. For convenience reasons, it is possible to represent

input vector as a tensor, shaping all parameters accordingly. For example, it is extremely

convenient in computer vision, where an image has natural spatial dimensions (width and

height) and RGB features dimension (X ∈ X).

3.2.2 Convolutions

Description Deep dense feed-forward networks have excessively many parameters and

allow only small input sizes because of that. Moreover, input sizes are set to be fixed, because

the number of neurons in fixed. In order to overcome these limitations and to make neural

networks more stable, convolutional neural networks were introduced in 1D (e.g. speech), 2D

(e.g. plain images) and 3D (e.g. spatial modeling) signal processing tasks.

17

Each layer of a convolutional neural network for image processing usually deals with four-

dimensional input and output tensors with first dimension enumerating samples in a batch,

next two dimensions enumerating pixels and their spatial representations, and last dimension

enumerating feature channels. We are going to describe all methods on three-dimensional

tensors because samples in a batch are independent and four-dimensional representation is

straightforward and only required for parallel computations.

Convolution is an operation ◦ over two tensors: four-dimensional parameters W and

three-dimensional image representation X ∈ X .

Y = W ◦X, Y d
ij =

K∑
u=1

K∑
v=1

Din∑
d′=1

W d′d
uv X

d′

i+u−dK
2
e,j+v−dK

2
e. (3.2)

Here W is a tensor of shape K×K×Din×Dout, which is limited to be squared in spatial

dimensions. Our notation follows this limitation because all kernels used in out experiments

are squared, but rectangular kernels may also be used in general. Resulting tensor Y ∈ X

has Dout feature channels.

This operation can be viewed as a traditional filtering operation applied multiple times

to every channel of image X. Strides can be introduced to perform a step of size s > 1 when

convolving filter with an image patch. This leads to reducing the spatial size of output s

times in each dimension.

3.2.3 Fully convolutional architectures

In image processing neural networks have initially become successful in classification and

regression tasks, which imply predicting one or only few target variables. Such networks

have a number of convolutional layers that extract features from an image, followed by

several dense layers, which fuse information from the extracted features for target prediction.

Interestingly, dense layers in these networks can also be represented as convolutional layers.

In order to do that one should specify a convolutional layer corresponding to first dense layer

to have a kernel of same size as input spatial size, yielding output size to be 1× 1. All other

dense layers are set to be convolutional layers with 1×1 kernels. We call a representation of a

neural network with only convolutional layers fully convolutional. In contrast to dense neural

18

networks, fully convolutional neural networks appeared to cope with tasks of estimating

large number of variables (for example, per-pixel labeling). In this thesis we construct fully

convolutional models for dense image matching (individual pixels displacement estimation,

appearance prediction etc.).

Receptive field and its influence on flow estimation Convolutional operation (3.2)

makes each neuron in a network locally connected to a K ×K region of a layer’s input. For

feed-forward architecture receptive field is defined as region on initial image that influences

the output of particular neuron in the network. In other words, receptive field is a set of

pixels that are path-connected to the chosen neuron. For example, assume a neural network

with three layers (as shown in Figure 3-1): first convolution with filter size 5, second one with

filter size 2 and stride 2, and the last one with filter size 3. The receptive field of the first

layer is 5 (just the same as size of the filter). Second layer has receptive field equal to 6, as

each neuron in second layer aggregated information from 2 neighbouring cells with receptive

size 5. Interestingly, the receptive field of the third layer appears to be equal to 10, in spite

of the fact that each neuron aggregated 3 cells with receptive field of 6. The trick is in the

fact that centers of pre-images of these three cells had a stride of 2 between them in X.

Eventually, when a kernel aggregatesK input cells, receptive field is increased by accumulated

stride multiplied by K − 1. Indeed, on layer l we aggregate Kl pixels from initial image X

which have accumulated stride saccum =
l−1∏
l′=1

sl′ between them. Then the area of saccum (Kl − 1)+

1 is aggregated. But the receptive field on layer l− 1 was already ql−1, which contributes to

total receptive:

ql = saccum (Kl − 1) + 1 + ql−1 − 1.

Total receptive filed size (assuming
∏

∅ = 1) is then

q =
L∑
l=1

(Kl − 1)
l−1∏
l′=1

sl′ (3.3)

As we are going to discuss below, our architecture extracts features from a pair of images

and fuses these features at some point. It is important to understand the receptive field

of each cell of extracted feature tensor in order to ensure that is it greater than largest

19

Рис. 3-1: Receptive field of CNN. Grey squares indicate convolutional kernel size, orange
square indicates receptive field size of an output neuron in last layer. This output neuron
aggregates information from large portion of initial input.

possible displacement between images. Otherwise it would be impossible to incorporate

knowledge about large correspondences into the model. One should also keep in mind that

the contribution of individual cells is decreasing from spatial position of the reference output

cell to edges, although distant cells are still included into receptive field. So deep neural

network is required to keep global context in each cell of extracted tensor representations.

3.2.4 Skip-connections

One drawback of deep neural networks was noticed to be in forgetting fine-grained information,

which is extracted at early layers. For example, in order to predict appearance of the scene

under different conditions (weather, illumination etc.), it is essential to both inject those

conditions into the image and preserve details and edges of objects present in the scene.

However, after a number of convolutional layers information about small details gets blurred.

To overcome this issue, reusing outputs of early layers as part of inputs to deep hidden layers

was proposed. Usually, a tensor from early layer is stacked to previous layer output tensor

in features dimension, assuming equal spatial size.

20

3.3 Projective geometry

Projective geometry concepts are important when dealing with image pairs capturing the

same scene. Projective transformations do not preserve shape, angles, length ratios. The one

thing which is preserved is straightness of lines. It turns out, that efficient representations

exists allowing to express all the required transformation in a matrix form. Only in this

section we use X, Y, Z to denote 3D coordinates. Also, x and X are used to denote 2D

and 3D vectors. These notations also denote the same points in homogeneous coordinates.

Whether we use homogeneous coordinates or not is clear from context.

3.3.1 Homogeneous coordinates

A point is represented with its two-dimensional coordinates (x, y) ∈ R2 on the plane or with

three-dimensional coordinates (X, Y, Z) ∈ R3 the Euclidean space. In two dimensions, a line

is represented with three coordinates (a, b, c) and the constraint of a point line on this line

is written as ax + by + c = 0. This leads to a three-dimensional representation of a point

(x, y, 1). Notice that in such a setting, ∀k 6= 0 vector (kx, ky, k) represents the same 2D

point on the plane, because for any line the constraint holds and each point is constrained

with two intersecting lines. The same reasoning can be applied to 3D case when considering

intersecting planes aX + bY + cZ + d = 0.

Thus, homogeneous coordinates for a 2D point (x, y) are defined to be (kx, ky, k) for any

value k ∈ R. k = 0 represents point at infinity, while k 6= 0 correspond to finite points.

Homogeneous coordinates for 3D point (X, Y, Z) are defined to be (kX, kY, kZ, k) for any

k ∈ R. We will write (k1X, k1Y, k1Z, k1) ∼ (k2X, k2Y, k2Z, k2) to denote equivalence of two

points.

Points are mapped into image planes with projective transformations. Necessary and

sufficient condition of a 2D mapping h to be a projective transformation is existence of a

non-singular 3×3 matrixH such that h(x) = Hx for any point x represented in homogeneous

coordinates. This assertion is a theorem, which states that projective transformations are

linear transformation in space of homogeneous representations. See proof of this theorem in

[20]. The same is true for 3D space for 4×4 matrix H. This allows for efficient representation

21

of all transformations in a matrix form.

3.3.2 Camera model

Now let’s consider how image is formed, when camera captures a 3D picture (see Figure 3-2).

To understand that we need a camera projection model. We assume no distortions and take

standard pinhole camera model. In camera local coordinates plane Z = f , where image is

formed, is called image plane. Here f is a camera focal distance. The projection of point

(X, Y, Z) is formed at the intersection of the image plane and the line joining camera origin

(focal point) and the considered point. The line from the focal point perpendicular to the

image plane intersects the image plane at principal point with 2D coordinates (px, py) relative

to this plane.

Рис. 3-2: Pinhole camera model. Camera origin coincides with coordinate system origin. Grey
plane represents image plane. 3D point in world coordinates is mapped to 2D projection on
the image plane.

From triangles similarity, one can write the projection rule:

(
X Y Z

)T
→
(
f
X

Z
+ px f

Y

Z
+ py

)T

.

In homogeneous coordinates this means

22


X

Y

Z

1

→

f
X

Z
+ px

f
Y

Z
+ py

1

 ∼

fX + Zpx

fY + Zpy

Z

 =


f 0 px 0

0 f py 0

0 0 1 0



X

Y

Z

1

 . (3.4)

Matrix

K =


f 0 px

0 f py

0 0 1

 (3.5)

is called camera calibration matrix or camera intrinsics matrix. The matrix of projection

in (3.4) is written as K[I|0].

3.3.3 Camera pose

Usually points are represented in a coordinate system, different from camera local system

(world coordinate system), so camera origin is not situated at (0, 0, 0) and camera axis

orientation does not coincide with coordinate axis. In order to represent a 3D point in camera

local coordinates, transformation involving rotation and translation should be applied:

Xcam = R(X−C),

where R is a 3 × 3 rotation matrix and C is a vector of camera focal point position. In

homogeneous coordinates

xcam =

R −RC

0 1



X

Y

Z

1

 .

This 4 × 4 matrix represents camera position in world coordinates. We will refer to it

as camera pose matrix P . When two camera pose matrices P1 and P2 are given, second

23

camera pose relative to first camera is P2P
−1
1 . This assertion easily follows camera pose

definition. Indeed, second camera relative pose is a matrix which defines a projection from

first camera local frame to second camera local frame. To compute this projection, we first

project points from first camera to world coordinates with P−11 and then use P2 to project

the obtained points to the reference coordinate system. We will use this fact when computing

ground truth values for camera relative displacement. Now we will more precisely look at

the intrinsic projective geometry between two views, namely, epipolar geometry.

3.3.4 Epipolar geometry

After the image is formed, the information about only two degrees of freedom is preserved

(remember that projection matrix is of size 3× 4, destroying one degree of freedom after its

application). In order to reproject pixels from an image onto the plane of another image, depth

information (Z coordinate of the pixel in camera local system) needs to be stored separately.

In driving scenarios this information can be sparsely retrieved from LIDAR sensors.

Assume the same point X in the world coordinates being projected as x onto first image

plane and as x′ onto second image plane. 3× 3 matrix F which sets constraint on x and x′

in form of

x′TFx = 0, (3.6)

is called fundamental matrix. This constraint comes from the fact that the point, both its

projections and both cameras focal points are coplanar (see Figure 3-3). Point of intersection

of a line that joins the two focal points is called epipole. There are two epipoles e1 and e2

– one in each image plane. As it can be seen from the picture, for each point x in the first

image, there exists a whole epipolar line l′ in the other image. This line can be represented

as a cross product l′ = e′ × x′ = [e′]×x′, where [e′]× is a 3 × 3 matrix of cross product.

Earlier we stated that there exists a linear transformation H such that x′ = Hx. Then

l′ = [e′]×Hx = Fx, where fundamental matrix is defined. Accounting for the fact that x′

belongs to the line l′ (x′T l′ = 0), we arrive at (3.6).

In the following sections we are going to discuss the problem of finding dense correspondences,

24

Рис. 3-3: Epipolar constraints. Coplanarity of 3D point X, its projections x, x′, cameras
origins C,C ′ and epipoles e, e′ is shown in pink.

a solution for which provides an over-determined set of pixel pairs (x,x′). Fundamental

matrix can be estimated from the obtained set, for example, with a five-point algorithm [40].

Together with camera calibration matrix (3.5), fundamental matrix is sufficient to reconstruct

relative pose of the cameras up to a translation scale, after cherality constraints are checked

(see [20]).

3.4 Correspondence field

In order to understand motion patterns between two images that share field of view, pixel-

wise correspondences information should be taken into account. Below we discuss methods

for predicting dense correspondences, which means that prediction is made in each pixel. In

B we show how to augment data when dealing with image pairs and dense correspondence

targets.

It is natural to represent dense correspondences in a tensor F ∈ F of two channels, where

in each point displacement vector of corresponding pixel in the first image relative to second

image is stored. This means, for two images X and Y , F is such tensor that the following

holds:

Xd
i,j ∼ Y d

i+F 1
i,j ,j+F 2

i,j
, ∀(i, j) : Mi,j = 1, (3.7)

where ∼ denotes that corresponding pixels from X and Y are images of the same 3D

25

point (although in RGB space they may be distant because of environmental changes); M is

a binary matrix that specifies whether for point (i, j) in image X corresponding point in Y

exists (discussed in the following section).

One can encounter representation (3.7) named flow field in literature. In our work we write

correspondence field, as traditionally optical flow estimation assumes static environmental

conditions, which is not the case in our experiments.

When visualizing ground truth and predicted correspondence fields we use color coding

shown in Figure 3-4.

Рис. 3-4: Correspondence field color coding. Displacement of each pixel is a vector from the
center to that pixel.

A traditional pipeline for correspondence fields estimation includes hand-crafted features

extraction with consequent matching. In our experiments for comparison we provide performance

of SIFT Flow [32], so here we provide basic ideas of the approach. The model predicts

dense correspondences, directly estimating a displacement vector for each pixel. Firstly,

SIFT [34] feature extractor is applied to the image densely. That is, in each pixel 64 × 64

neighbourhood is divided into 4 × 4 cells and a descriptor of length 128 is obtained after

gradient orientation histogram having 8 bins is built. The obtained H ×W × 128 tensor is

called SIFT image. This image is a tensor representation of both inputs X and Y , which is

similar to tensor representation extracted by hidden layers of a neural network. Secondly,

26

matching objective is introduced to make SIFT descriptors match along the flow vectors while

preserving smoothness. This objective induces a factor-graph and inference is performed

through applying dual-layer loopy belief propagation. Several heuristics are introduced to

gradually speed up the process: decoupling smoothness term, coarse-to-fine matching. SIFT

Flow pipeline enables to grasp large displacements because matching is performed globally.

On the other hand, SIFT descriptors incorporate only local information, which may be

detrimental for establishing correspondences in large monotonic regions (e.g. road, walls) or

thin objects (e.g. lampposts).

Matchability

Predicting correspondence field densely is an ill-posed problem in general case, because some

of the pixels are not visible in the second image due to occlusions, objects leaving the scene,

ambiguities etc. Complex scenes are usually cluttered and some objects obscure the others:

a tree can occlude part of the building in the first image, which is nevertheless visible in the

second image due to 3D motion nature. Some objects can appear or leave the scene because

of limited camera field of view. Also, some objects can be present or absent only in one image

because of the temporal distance between images: buildings can be constructed or destroyed,

moving objects can come and go from the scene. Moreover, it is hardly possible to formalize

movement of some pixels, for example of those belonging to sky. In order to resolve this issue,

matchability matrix is introduced in (3.7) following [51]. Binary random variable is associated

with each pixel of the first image, indicating its visibility in the second image (0 meaning

not visible and 1 meaning visible). In our experiments we model matchability matrix with a

fully convolutional network branch with two neurons softmax activation function on the top

(predicting probabilities of each pixels to be matchable).

3.5 Correspondence estimation from a pair of images

For the task of correspondence field prediction we construct a fully-convolutioinal neural

network, which takes a pair of images as an input and predicts correspondence field and

matchability matrix. In B.2 we also pose correspondence prediction as a classification task

27

and present a model which predicts discrete variables in each pixel and performs further

refinement step.

3.5.1 Two-stream network

When given an input pair of images, one approach to fuse available information might be

in stacking these two RGB images along the color dimension and feeding the obtained six-

dimensional tensor into a neural network as proposed in [14]. Let’s consider what happens

at early layers of such neural network. For example, the output of the first convolutional

layer represents the result of (3.2) applied directly to the tensor of stacked images. This is

a three-dimensional tensor, where feature vector for each pixel is formed after convolving a

kernel with a patch extracted from the input tensor. Notice that this input patch is a stack of

two patches extracted directly from two images. However, due to large displacements these

patches are taken from different parts of the scene, which means that we encode a pair of

scene points that in general case have no relation to each other into one feature vector.

Understanding of this situation leads to an idea of separate processing of each image before

stacking features that already encompass global context.

We propose splitting neural network into two identical parts which share the parameters

values, each processing one image from a pair. In this way, meaningful features are built

for both images separately. This idea is implemented as a siamese sequence of convolutional

and pooling layers, which output spatially downscaled feature tensors. Only at this stage do

we concatenate the obtained representations, because each feature vector now encapsulates

global context.

Following this approach, the architectures used in our experiments have the following

pipeline: parallel features extraction with weights sharing, features fusing through concatenation,

target values prediction. The whole model is trained end to end, containing only differentiable

operations. In the following section we separately discuss computational graph peculiarities

which allow to make models more robust and make predictions more accurate.

28

3.5.2 Skip-connections

As it was already mentioned, in order to increase prediction accuracy it is important for

the model to be able to reconstruct fine-grained details of initial images. For example, edges

in a correspondence field are strongly correlated with objects edges on the initial image.

Deep neural network does not have explicit mechanisms to store this information and may

smooth out important details after several convolutional layers. But it is possible to keep this

information by introducing new edges in a computational graph. Straightforward approach

is to concatenate output tensors from early layers to input tensors of deep layers in order to

provide new, rich with fine-grained information, inputs.

Another option is to extract information from pooling layers, because these layers are

exactly the points of information loss in the computational graph. The idea is to keep tensor

of arg max indices that appeared in each pooling layer and perform deconvolutions, putting

information in places of those indices, leaving other cells empty (zero), in contrast to copying

the information or putting it into upper-left positions. This approach was shown to be efficient

for semantic segmentation task in [4].

This type of skip-connections is used in the architecture shown in Figure 3-5, which

we refer to as FlowMatchNet. Tensors depending only on first image are shown in gray,

while those depending only on second image are in red. In yellow we show those tensors for

which computational graph includes both first and second image. Other colors for tensors will

usually denote prediction targets. Arrows show layer input-output tensors relations inside the

neural network. Skip-connections are also indicated with arrows. Tensors which are located

close to each other (with no arrows between, but having a small gap) are computed in a feed-

forward fashion from left to right. Adjoined tensors (having no gap in figure) are concatenated

in features axis. Matchability prediction branch, if present, is identical to correspondence

prediction branch with the only difference that last layer has softmax activation function.

Skip-connection arrows leading to matchability decoder part are not shown on picture for

readability. Notice that these two branches do not share parameters (numerical values are

different and trained separately) in contrast to features extraction branches, where the two

streams have exactly the same sets and numerical values of parameters.

29

We will use the same style for visualizing architectures further in text.

Рис. 3-5: FlowMatchNet architecture with two prediction branches: correspondence F
and matchability M . Grey color refers to tensors depending only on first image; red
color – to those depending only on second image; yellow color – to those depending on
both (information fused). Arrows represent computational graph connections. M branch is
identical to F branch (connections are omitted for readability). Two conv-conv-pool and two
unpool-conv-conv blocks are hidden with dots on the left and on the right respectively.

3.5.3 Coarse to fine approach

Although correspondence map provides much stronger signal than camera pose, direct correspondence

map prediction is still a difficult task. In order to make it simpler for the model to learn, we

leverage coarse to fine approach, starting early predictions at small scales from intermediate

feature representations. The scale of prediction comes from a network structure naturally,

because pooling layers, which downsample tensor representation in spatial dimensions, are

present in all our architectures. That is, we predict coarse correspondence field to match 32

times downsampled target map after fifth pooling layer, because its tensor representation

has H
25
× W

25
shape when all pooling layers have stride 2. When training the network, additive

members are added to the loss function to constrain all the predictions to match the target

map. Effectively, these coarse to fine maps serve as regularizes at training stage, providing

additional supervision to intermediate network layers and constraining features which they

output.

30

3.5.4 Warping

When dense correspondence field is known, it allows to perform warping operation. Warping

A is an operator that is defined over second image X from a pair and correspondence field

F . Notice that after displacing pixel (i, j) by F new coordinates are i + F 1
i,j, j + F 2

i,j ∈ R,

which are not integers in general case. In order to form a valid warped image, interpolation

to discrete grid is required, so the result or warping operation A(X) is:

A(X) = Y : Yi,j = interpolate
(
Xi+F 1

i,j ,j+F 2
i,j

)
. (3.8)

Using bilinear interpolation to a discrete grid in (3.8) is a differentiable operation, as

shown in [24], although it involves rounding obtained coordinated to nearest integer.

Warping representations Earlier we have understood that skip-connection are required

to enable fine-grained predictions. However, simple concatenation of tensors from early layers

will lead to the same issue that was discussed in 3.5.1: the model will be forced to fuse

information from local patches which do not have any relation to each other. We propose

to firstly distort tensor representation before concatenation in order to fuse information

properly.

Notice that warping operation (3.8) is defined on arbitrary-sized 3D tensor Z ∈ F ,

provided that correspondence field F has the same spatial size (which can be achieved by

resizing using nearest-neighbout or bilinear interpolation).

In the previous section we discussed coarse-to-fine approaches, so we can construct an

architecture that would predict coarse correspondence fields in its hidden layers. These fields

can be used to warp tensors from early layers. The resulting architecture, referred to as

WarpNet, is shown in Figure 3-6. Matchability branch, if present, is kept as in FlowMatchNet.

3.5.5 Loss model

Both FlowMatchNet and WarpNet are trained with ground truth F and M supervision. In

this section we denote F̂ and M̂ to be the model’s predictions. Total loss is defined as

31

Рис. 3-6: WarpNet architecture. Arrows show computational graph connections. Blue tensors
represent correspondence fields predicted at different scales. Representations of second image
are bilineary distorted inside warping layers with coarse fields. Dots hide two blocks (×2 and
×4 scales) in both cases.

L
(
F,M, F̂ , M̂

)
= λLcorresp

(
F,M, F̂

)
+ Lmatch

(
M, M̂

)
, (3.9)

where λ is a meta-parameter, Lmatch is an arithmetic average of per-pixel binary cross-

entropy loss over all pixels. For FlowMatchNet Lcorresp is an arithmetic average of a per-pixel

correspondence loss function over matchable pixels:

Lcorresp

(
F,M, F̂

)
=

1

Nmatch

∑
p:M(p)=1

`
(
F (p), F̂ (p)

)
, Nmatch = |{p : M(p) = 1}|. (3.10)

For WarpNet Lcorresp is a weighted sum of losses on each predicted map. These losses are

of the same structure as (3.10).

It is natural to choose ` to be L2 squared loss `
(
F (p), F̂ (p)

)
= ‖F (p)− F̂ (p)‖22. However,

individual pixels displacements values range from zero to several hundreds. For instance, a

histogram of absolute displacement values on SYNTHIA dataset is given in Figure A-1.

Choosing L2 squared loss leads to noisy predictions and noisy training curve, which we

observed in our experiments. In order to avoid introducing noise into our model, we choose

32

truncating this loss with meta-parameter coefficient T :

`
(
F (p), F̂ (p)

)
= min

(
‖F (p)− F̂ (p)‖22, T 2

)
.

3.6 Cross-seasonal prediction

3.6.1 Modeling conditions and predicting appearance

When traversing the same scene several times with a big time gap, several things change

dramatically. We have already discussed that some objects may be present or absent in one

image and the overall appearance of the scene may vary. Here we visit the latter problem,

introducing a notion of appearance conditions definition and presenting a model that makes

a step towards unifying the appearances of the same scene.

Appearance changes of outdoor scenes are physically conditioned by relatively few factors:

position of the sun, cloud cover, precipitations. Knowledge of these factors would allow to

model changes in objects colors because of illumination, weather (e.g. snow on pavements)

and shades. However, some of these factors are hard to formalize to be numerical parameters.

Moreover, as discussed in 2.3, few datasets are available with reach hand-labeled information,

none of them large-scale.

In order to avoid the requirement of ground truth information about the mentioned factors

for each image, we propose an architecture in encoder-decoder fashion, which combines scene

objects from the first image and appearance conditions from the second image. We define

conditions to be a small-dimensional vector, which is sufficient to reconstruct appearance of

second image under extracted conditions. This is an image that would have been obtained

by the camera in position identical to first camera position with environmental condition

identical to second image. Putting it another way, the aim is to reconstruct warped first

image given second image and the conditions.

Formally, let X, Y be a pair of images. Let c : X → Rd be a function that encodes

the conditions in a small-dimensional vector given an image. We require the existence of

33

reconstruction function r : X × Rd → X such that

r(Y, c(X)) ≈ W (X, pY).

Рис. 3-7: Architecture modeling c(X): conditions encoder. Takes RGB image as an input
and outputs d numbers after seven convolutional layers.

We model c with a neural network. The architecture should output d numbers when given

an image. Usually, this is done with a number of convolutional layers, followed by several

dense layers. We generally follow this approach, but pose all dense layers as convolutional,

setting the appropriate kernel size for the first of those layers to make the output of spatial

size 1× 1 as discussed in 3.2.3. This slight modification only keeps the d numbers in features

dimension, having the exactly the same number of parameters and exactly the same training

and inference equations. The proposed architecture is shown in Figure 3-7. Convolutional

layers correspond to AlexNet [28] first five layers, batch normalization operations are inserted

after each layer. Nonlinear rectifier function (ReLU) is used everywhere except last layer,

which is linear. We choose d = 8 in the experiments.

While modeling r we introduce another function f : X → F which refers to second

image feature extractor. At the end, to produce the desired output, we extract features from

Y with f , forming the tensor of shape h × w × dfeat and combine it with conditions tensor

of shape 1× 1× d, simply repeating the values in first and second dimensions and stacking

34

both tensors along last dimension. Architecture of feature extractor is shown in Figure 3-8.

Рис. 3-8: Image feature extractor f(X): deep encoder-type convolutional neural network. Has
five hidden pooling layers, which yields a tensor of ×32 smaller spatial resolution compared
to input image X.

Figure 3-9 shows the way r and c are merged into one architecture which is fully differentiable.

The only required input is a pair of perfectly aligned images X and Y or a pair of images X

and Y together with full information for warpingX, that allows training without knowing any

numerical ground truth values of any environmental factors. Alignment can be achieved in

case of fixed camera (web-camera datasets) or in case of knowing depth and pose information

that allow re-projecting one of the images onto the plane of another. This information if

required to construct a loss function, penalizing output deviation from W (X, pY). Because

output prediction models the first image, we select mean pixel-wise L2 loss in color space.

We refer to this architecture as CondNet.

3.6.2 Fusing conditions model with correspondence estimation

The model described in previous section effectively allows to walk in space of image appearances,

injecting d-dimensional parameter instead of input obtained from c(X). Intuitively, modeling

the scene appearance under different conditions should help to improve the quality of establishing

correspondences between two images because of the following consideration. Pairs capturing

the same scene under same conditions are easier than those capturing the same scene

under different conditions. Truly, optical flow problem is much easier than cross-appearance

correspondence problem.

We once again stress that perfect image alignment or warping information was required

35

Рис. 3-9: CondNet architecture. Combines features encoder from first image, conditions
encoder from second image, fusing concatenation layer and reconstruction branch. Target
output is second image warped onto the plane of first image.

only during training stage to compute loss value. In other words, when solving the task of

predicting correspondences, the model that extracts conditions from X using c and applies

those to Y using r, no pixels displacement is introduced. So,

F (X, Y) = F (X, r(Y, c(X))).

This idea leads to simple concept of stacking two models. First, predict appearance of Y

under conditions from X and then establish correspondences between the resulting image

and X.

In fact for any conditions vector c

F (X, Y) = F (X, r(Y, c)).

Because FlowMatch architecture extracts features from both images with Siamese network

part, it is easier to match images from the same domain. Previously, even if Ŷ = r(Y, c(X))

closely resembled W (X), it was still not real image. Thus, we would extract features from

real X and realistic Ŷ with exactly the same network part. It is better to extract features

from the same domain. We propose to feed r(X,0) and r(Y,0) as FlowMatch input pair,

simply reducing both images to zero-conditions appearance.

36

The architecture modeling this idea is constructed in Figure A-9. In the same figure

we show another approach which also exploits CondNet model as a part of computational

graph. The idea is to regularize features that are extracted from the bottleneck of the encode-

decoder type correspondence prediction architecture. In order to enable good cross-seasonal

predictions, it is natural to require independence of image representations, which are fused in

the bottleneck, from appearance conditions. For example, if instead of X2 another image was

provided that captures the scene from exactly the same point but under different conditions,

the result should stay exactly the same. To regularize the model with this constraint, we

introduce additive loss term, which will penalize the difference between features extracted

from X2 and those extracted from r(X2, c(X1)).

3.7 Displacement estimation

Having discussed methods that estimate correspondences between two images at pixel level,

we describe approaches which leverage this information for camera geometrical displacement

estimation.

Angle and direction estimation Correspondence information forms an over-determined

system that is sufficient to estimate fundamental matrix F (3.6) (for example RANSAC

estimator can be used for five-point algorithm [40]). Using camera intrinsics matrices K and

K ′, essential matrix is defined as E = K ′TFK. This matrix allows only to recover relative

displacement up to scale, so that the direction and the angle are recovered, but the magnitude

is not.

Relative camera pose can be estimated from the essential matrixE through SVD decomposition.

Supposing E = Udiag(1, 1, 0)V T , there are two possible factorizations E = SR with S =

UZUT and R = UWV T or R = UW TV T , where

W =


0 −1 0

1 0 0

0 0 1

 , Z =


0 1 0

−1 0 0

0 0 0

 .

37

R here is a rotation matrix. Also, last column of U is collinear to the direction of

displacement. This means, up to scale, two options are possible for displacement direction

(U3 or −U3). Proof is provided in [20].

Of the obtained four options, only one is left after checking cherality constraints, which

reproject matched points into their 3D preimages and ensure that obtained points lie in front

of both cameras.

Neural network for displacement estimation The model is required to estimate magnitude

of geometrical displacement between cameras. It is also possible to construct regression on

any number of chosen degrees of freedom.

We have already discussed the architecture c(X) which predicts d numbers from an input

tensor in 3.6.1. In driving scenarios it is natural to choose d = 2 (magnitude and azimuth

prediction) or d = 3 (magnitude, azimuth and camera yaw prediction), because the platform

always stays on the road and has no freedom in Z dimension and camera is fixed on the

car, so roll and pitch angle are fixed. Together with correspondence prediction model, whole

architecture can be fine-tuned end-to-end (only using displacement ground truth information

as a supervision signal). We call this model DispNet.

38

Глава 4

Эксперименты

This chapter describes computational experiments, in which we train and evaluate the

proposed models. All experiments are set in Python. GPU implementation of neural networks

architectures is done in Theano and Lasagne. In all our experiments weights are initialized

uniformly as in [18]. Adam optimizer [27] is used for training the models. Unless otherwise

specified, qualitative results (visualization of models performance) are provided on validation

samples, which were never shown during training.

4.1 Training schedules

4.1.1 Datasets

We start our experiments on SYNTHIA dataset, referring to samples at 320×192 resolution

as SYNTHIA, and to samples at 160×92 resolution as SYNTHIAsmall. We also add "same"in

a superscript to show that both images in a pair come from the same route traverse (e.g.

SYNTHIAsame
small).

As discussed in section 2.4, SYNTHIA dataset does not contain ground truth flow fields

for image pairs, but rather provides depth maps for each image together with camera intrinsic

parameters. This information is enough to re-project points of static objects (buildings,

lamppost) from one image plane to another (see (3.4)). Moving objects’ motion can not

be extracted from the available information, but in this thesis we are mainly interested in

39

predicting target values between different traverses of the same route, which means ground

truth motion for these objects is undefined. Leveraging semantic information of the dataset,

pixels belonging to moving objects can be factored out from the loss function during training.

The drawback of this approach can be seen when fine-tuning models on optical flow datasets

(e.g. KITTI dataset), where errors tend to be high on moving objects. In order to expand

a model beyond learning only background (single rigid body) motion, we pre-training on

FlyingChairs dataset, which contains individual objects’ motion information, before going

for SYNTHIA with further fine-tuning on KITTI.

For evaluation on KITTI dataset, we split KITTI2015 into training (80% of samples)

and validation (20% or 40 images), also including KITTI2012 into training set (making 354

training samples in total). Original training-validation split is used for FlyingChairs dataset.

Simply splitting images for SYNTHIA and NCLT into training and validation sets would be

unfair, as same objects would appear in both sets, although captured from different positions.

For both dataset we project global coordinates onto map and separate regions for training

and validation, ensuring absence of training scenes in validation set.

Sampling from SYNTHIA and NCLT is performed non-uniformly, because these datasets

represent continuous route traverses. While usually in computer vision tasks samples are

taken from dataset with equal probability, here a platform can pass different parts of the

environment at different speed or pass them different number of times. In both cases, training

pairs will not be balanced across scenes of the environment. Moreover, if the platform waits

for the traffic light, big number of training pairs will be generated with camera displacement

being close to zero. We want the distribution to be balances both across scenes and across

possible camera displacements (within some range, for which images have sufficient overlap

of fields of view).

In SYNTHIA dataset the platform traverses exactly the same route several times, which

means each route can be mapped to a line segment as shown on Figure 4-1. All images

captured along the route are represented as points on the segment. Example in the figure

shows a route that has been traversed twice (gray and yellow points represent first and

second traverses). To pick the first image (an anchor) a point is uniformly sampled from

the line segment. Then, nearest image is picked to be an anchor. Second image is picked

40

with the same procedure, when new segment is a sub-segment containing all images in a

neighbourhood of the anchor. This procedure ensures sampling of pairs that balances visible

environment scenes and cameras relative displacement. NCLT platform not always travels

exactly the same route, so we sample first image with probability inversely proportional to

the number of pairs this image is associated to.

Рис. 4-1: Sampling from SYNTHIA dataset. Camera poses from two traverses (yellow and
grey) are mapped to a line segment. Point X is sampled uniformly from the segment after
which first image (anchor) is picked. In the neighbourhood of the anchor the same procedure
is repeated to pick second image. This procedure ensures diversity of scenes and relative
displacements in training set.

4.1.2 Pre-training with ground truth warping

WarpNet architecture experiences a problem of cold start. This can be seen from Figure 4-

2, where we show training set average endpoint error for first 20 thousand iterations of

FlowMatchNet andWarpNet. The curve for WarpNet goes above the curve for FlowMatchNet

on the early stages, because on these stages coarse correspondence fields prediction is poor.

Remembering that those fields are used for warping intermediate tensor representations, we

understand that large noise is introduced to the model from the beginning, which dumps the

speed of convergence.

To overcome this negative effect one can perform first iterations, providing ground truth

correspondence fields for warping operations. We do not remove coarse prediction branches

or change the loss model, only injecting ground truth values in those places, where coarse

predictions are used in regular mode. The effect of this change is also displayed in Figure 4-2.

After 20 thousand iterations, we switch training mode to regular regime. We use this schedule

to train WarpNet architecture in our experiments.

We stress that this section describe only first part of training iterations and is aimed at

developing effective pre-training method. FlowMatchNet seeming superiority at this point

41

Рис. 4-2: Average EPE (endpoint error) convergence for first 20 thousand training iterations.
FlowMatchNet starts converging faster than WarpNet, because random coarse predictions
are used for warping at early stages. To improve WarpNet convergence, we start warping with
ground truth F for the first 20 thousand iterations, switching to regular mode afterwards.

does not survive after several hundreds thousands of iterations, which we will describe in the

following sections.

4.2 Correspondence prediction

Now let’s describe and analyze the results of correspondence prediction methods. In this

section we provide results for FlowMatchNet and WarpNet. While training was done with

the loss described in Chapter 3, in this section we report endpoint mean errors (EPE) for

interpretability.

4.2.1 Comparison

From violin plots in Figure 4-3 we can clearly see that WarpNet architecture performs

substantially better than FlowMatchNet, having 3.2 mean per-pixel EPE compared to 6.0.

Both distributions have heavy tales, which is natural due to large ground truth displacements.

Figure A-2 shows per-image mean EPE dependency on mean ground truth. Notice a "fracture"in

FlowMatchNet plot, which means that the model can not cope well with large displacements.

42

For WarpNet the plot does not have such a loss pattern, although mean EPE slightly grows

all the way from zero to large ground truth displacements. Therefore, coarse-to-fine approach

together with warping operations introduce strong regularization to the model, making it

grasp large pixels displacement.

FlowMatchNet WarpNet

Рис. 4-3: Violin plots for FlowMatch and WarpNet: distribution of endpoint errors (EPE).
Mean value is shown in red. Plot is truncated at 25 pixels to better represent bottom part

Figure also shows one validation sample from SYNTHIA with challenging rainy conditions

and EPE heat map for both architectures on this pair of images. WarpNet grasps road pixels

better as well as pixels of small or thin objects such as tree (these objects usually have large

displacements as they are closer to camera).

Training and validation EPE for different datasets are aggregated in Table 4.2.

FlowMatchNet and WarpNet have a number of differences as described in Chapter 3, so

from comparison provided in this section it may not be clear whether warping operations play

big role in WarpNet being much better than FlowMatchNet. To provide direct evidence of

warping layers impact, in the following section we study WarpNet in comparison to the same

architecture without warping layers and also to an architecture which refines its predictions

in an iterative manner.

4.2.2 Warping layers effect

A neural network having the same architectural structure as WarpNet but with no warping

operations is called base architecture in this section. Below we discuss superiority of WarpNet

43

over base architecture and also show that simply introducing warping layers gives better

results than performing iterative refinement.

WarpNet follows coarse to fine idea of predicting a flow, reusing its coarse predictions to

warp sample representation. Another similar approach involves predicting flow at full scale,

then stacking the obtained prediction with image pair and run through refinement network

[21]. Notice that refinement network can be applied multiple times in an iterative fashion,

because it inputs image pair and predicted field from previous iteration and again outputs

predicted field (refined), which can be again stacked with the image pair to form new input.

The first part of the joint architecture is a bit different as it takes only image pair as an

input, having no prior information about correspondence field.

To make a fair comparison, we select base architecture to be the first part of the final

architecture. We train three architectures: only base network (B), base network followed by

one step of iterative network (BR(1)) and base network followed by two steps of iterative

network BR(2). In the latter model iterative network weights are not shared, i.e. the two

steps have separate set of parameters. When stacking an iterative part on top of already

trained model, we preserve the weights of the bottom part and start with training only

the top part (last iterative step). We also fine-tune the whole architecture end-to-end after

having trained both parts (top and bottom). We write ’+f’ when showing fine-tuned results.

We perform training on SYNTHIAsame
small and provide the results in Table 4.1 to prove the

concept of warping layers approach being superior to iterative approach. From this table one

can see that WarpNet has considerably smaller overfitting gap (1.54−1.12 = 0.42) compared

to all other architectures present in the table (e.g. 2.53−1.23 = 1.30 for base network). Also,

even though WarpNet is approximately 1.5 times slower than the base network, it is almost

twice faster than architecture with two iterative refinement steps. Thus, introducing warping

operations helps to generalize the model to new (validation) data with reasonable loss in run

time.

4.2.3 Visualization

Visualization of WarpNet performance on NCLT dataset is provided in Figure A-3. In each

example, a pair of images is shown together with ground truth correspondence field, predicted

44

WarpNet B BR(1) BR(1) + f BR(2) BR(2) + f
Training EPE 1.12 1.23 1.14 1.08 1.03 0.94
Validatons EPE 1.54 2.53 2.32 2.35 2.19 2.13
Forward run time
(ms per pair) 33 24 42 - 64 -

Таблица 4.1: Comparison of WarpNet with iterative architecture. "B"denotes base
architecture (same structure, no warping); "BR(k)"denotes base architecture with k = 1 or
2 refinements. Each refinement copy is added preserving already trained weights for bottom
layers. Weights are not shared for refinement steps. "+f"denotes fine-tuning end-to-end.
WarpNet overfitting gap is smaller on validation. WarpNet is faster than BR(1) and BR(2).

correspondence field (full and masked with ground truth mask of LIDAR hits) and EPE

heat map. Largest errors are achieved on pixels corresponding to road, branches and moving

objects. Firstly, moving objects ground truth information is incorrect. Because dataset only

provides depth maps, having no semantic information, moving objects can not be factored

out, so when we reproject their depth maps, we introduce noise into the dataset. Accounting

for the fact that LIDAR does not capture most of pixels of the road, it is hard for the model

to grasp its motion pattern. Branches on the trees also have substantial noise in ground

truth data as LIDAR depth estimations have finite resolution and branches are very thin, so

reprojection may be incorrect. Therefore, inaccuracy of ground truth data is a limitation in

this case.

Matching results, obtained with WarpNet, for random pixels are shown in Figure A-4 for

NCLT, in Figure A-5 for KITTI. On the KITTI dataset motion of moving objects is learned

successfully, which can be seen from point to point matches between the parts of cars.

4.2.4 Endpoint errors

In this section we aggregate results for correspondence prediction of the discussed architectures

in Table 4.2. We also show SIFT Flow [32] performance for comparison (the method was

discussed in 3.4).

45

SYNTHIA NCLT Flying Chairs KITTI
WarpNet 3.2 14.8 2.1 6.4
FlowMatchNet 6.0 17.0 3.2 8.0
SIFT Flow [32] 16.2 29.6 4.4 21.4
Zero prediction 29.2 44.3 10.7 31.3

Таблица 4.2: Endpoint average error results. WarpNet is better than FlowMatchNet across
all datasets. SIFT flow and zero prediction results (average magnitude) are given for
comparison.

4.3 Appearance prediction

We trained CondNet architecture for 200 thousand iterations on SYNTHIA until training

loss convergence.

The only image-level label available represents environmental conditions that were modeled

during the run. Although we never used this label during training, it is natural to suppose that

seasons are encoded in vectors, which are extracted from raw images by c. In Figure A-6 we

show t-SNE 2D projections for these eight-dimensional conditions vectors. Images labeled as

’dawn’, ’winter’, ’night’, ’rain’ form well-separated clouds, while ’summer’, ’spring’ and ’fall’

are mixed. Indeed, these three seasons are usually indistinguishable in urban environment.

This means that seasonal information is encoded into conditions.

Figure A-7 shows two random examples of CondNet performance. First row represents a

pair of images, second row provides the result of CondNet prediction together with the heat

map of mean absolute difference between the predicted image and warped second image. As

shown in Table 4.3, error (absolute difference averaged over pixels and RGB channels) drops

to 12 on training set, equaling 13 on test sample, so only minor over-fitting takes place.

We also show the results on Transient Attributes Database [30]. 21 of 101 web-cameras

are put off for validation, leaving 80 cameras for training. Table 4.3 shows mean CondNet

error, which is L2 norm of pixel-wise difference between ground truth X2 and predicted

appearance of X1 under the conditions extracted from X2. Over-fitting to the training set is

clearly visible because of the small number of samples in the training set. Qualitative results

for validation set are given in Figure A-8. The model learns to predict well large details, such

as color of the sky and major spots of light. Unfortunately, having only 80 cameras in the

training set does not provide diverse enough set to model the appearance of small attributes.

46

Dataset Training Validation
SYNTHIA 12 13
Transient Attributes 19 28

Таблица 4.3: CondNet mean absolute difference error. Good generalization is achieved
on SYNTHIA due to diverse enough training set. Overfitting on Transient Attributes is
substantial as training set consists of only 80 scenes

Conditions model effect on correspondence estimation

We provide the results for both ideas from 3.6.2 (preliminary prediction and regularization)

for SYNTHIA dataset in Table 4.4. In both cases, training error drops, but validation error is

higher. In other words, introducing CondNet into this general pipeline only deteriorates the

results and widens the overfitting gap. Fine-tuning the whole architecture in an end-to-end

fashion with small learning rate also does not help to reduce the overfitting gap.

FlowMatchNet FlowMatchNet +
CondNet(p)

FlowMatchNet +
CondNet(r)

Training 4.5 3.9 4.0
Validation 6.0 7.2 7.1

Таблица 4.4: CondNet effect on correspondence estimation deteriorates the result on
validation, widening the overfitting gap

4.4 Geometrical displacement estimation

Finally, we provide the results for camera displacement estimation on SYNTHIA and NCLT

datasets. For SYNTHIA magnitude is measured in Unity units, while for NCLT – in meters.

Angles errors are measured in degrees from 0 to 180.

On SYNTHIA, we report DispNet model combined with WarpNet for magnitude and

azimuth prediction. RANSAC algorithm applied to full correspondence field gives worse

results both for camera orientation and displacement magnitude. Because of the fact that

the platform travels along the straight lane most of the time, camera displacement yaw

angle is equal to zero for such pairs. That is why 3DOF prediction has shown worse results

in our experiments compared to 2DOF, which we are reporting in Table 4.5. Azimuth mean

error might be misleading, because when camera motion is small, any predicted value of

47

azimuth will not lead to major displacement error as long as magnitude is predicted correctly.

We achieve substantial improvement of platform localization with mean displacement error

equaling 0.20 while mean ground truth displacement is 1.75 Unity units.

On NCLT we also report the results for DispNet model combined with WarpNet. Again,

when predicting 3DOF (azimuth, magnitude, yaw), results for azimuth and magnitude are

deteriorated compared to 2DOF prediction. On the other hand, yaw angle is predicted better

in 3DOF mode than when predicting it as a single target.

SYNTHIA NCLT
Azimuth error, ◦ 4.7 10.0
Yaw error, ◦ - 2.2
Magnitude error 0.11 0.56
Displacement error 0.20 0.76
Average ground truth displacement 1.75 2.62

Таблица 4.5: Displacement estimation results. Displacement error represents Euclidean norm
of localization error. DispNet for 2DOF prediction is reported on SYNTHIA, because yaw
angle changes are not diversely represented in training set. Substantial localization refinement
is achieved from 1.75 to 0.20 Unity units. For NCLT localization uncertainty reduces from
2.62 to 0.76.

48

Глава 5

Заключение

In this thesis we have addressed cross-appearance image matching problems in presence

of large displacements, proving applicability of deep learning based methods. On the way

to solving these problems, we have based the proposed methods on recent progress in the

field, at the same time embracing basic knowledge in this work. We build bridges between

deep learning and traditional localization approaches, introducing differentiable warping

operations for arbitrary tensor representations as well as solving localization problem through

establishing correspondences between pixels.

We discuss architectural pipeline and its variations together with training schedules. We

show how different models are combined to form a fully-differentiable model, which can

be trained end-to-end. Comprehensive analysis is provided helping to obtain deep insights.

The proposed pipeline can be naturally expanded with post-processing methods basing on

graphical models, shallow neural networks etc.

Synthetic data sets were leveraged, which has been proven to provide rich prior information

about the scene motion and appearance patterns. However, cross-seasonal driving data with

minimal noise is required to perform confident fine-tuning of the models. We have shown

substantial error decrease in real outdoor scenarios, which, however, have not yet reached

the desired accuracy. Collection of large cross-appearance matching datasets in real domain

together with improving the proposed models is a direction of future work. Structure from

motion methods may be used to construct large collections of cross-seasonal driving data,

where precise ground truth poses in world coordinates will be present together with sparse

49

or dense pixels depth information.

Our work can be expanded with exploring semantic information that would allow better

understanding of correspondence fields. The problem of semantic segmentation is much

easier, because it involves only one image as an input and recent methods show impressive

performance for driving scenarios.

Speed of training and speed of forward inference are essential things to address, because

the model needs to be fast to cope with real-time driving and robotics scenarios. Moreover,

convergence is achieved after hundreds of thousands iterations, which take days or weeks

of GPU-time. Faster architectures should be considered and training process should be

controlled carefully.

50

Литература

[1] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In
Proceedings of the IEEE International Conference on Computer Vision, pages 37–45,
2015.

[2] Shervin Ardeshir, Amir Roshan Zamir, Alejandro Torroella, and Mubarak Shah. Gis-
assisted object detection and geospatial localization. In European Conference on
Computer Vision, pages 602–617. Springer, 2014.

[3] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neural
codes for image retrieval. In European conference on computer vision, pages 584–599.
Springer, 2014.

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561,
2015.

[5] Aayush Bansal, Hernán Badino, and Daniel Huber. Understanding how camera
configuration and environmental conditions affect appearance-based localization. In
Intelligent Vehicles Symposium Proceedings, pages 800–807. IEEE, 2014.

[6] Chris Beall and Frank Dellaert. Appearance-based localization across seasons in a metric
map. 6th PPNIV, Chicago, USA, 2014.

[7] Alessandro Bergamo, Sudipta N Sinha, and Lorenzo Torresani. Leveraging structure
from motion to learn discriminative codebooks for scalable landmark classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
763–770, 2013.

[8] Andreas Breitenmoser, Laurent Kneip, and Roland Siegwart. A monocular vision-based
system for 6d relative robot localization. In Intelligent Robots and Systems (IROS),
pages 79–85. IEEE, 2011.

[9] Thomas Brox and Jitendra Malik. Large displacement optical flow: descriptor matching
in variational motion estimation. IEEE transactions on pattern analysis and machine
intelligence, 33(3):500–513, 2011.

[10] Nicholas Carlevaris-Bianco, Arash K Ushani, and Ryan M Eustice. University of
michigan north campus long-term vision and lidar dataset. The International Journal
of Robotics Research, 35(9):1023–1035, 2016.

51

[11] David M Chen, Georges Baatz, Kevin Köser, Sam S Tsai, Ramakrishna Vedantham,
Timo Pylvänäinen, Kimmo Roimela, Xin Chen, Jeff Bach, Marc Pollefeys, et al. City-
scale landmark identification on mobile devices. In Computer Vision and Pattern
Recognition (CVPR), pages 737–744. IEEE, 2011.

[12] Winston Churchill and Paul Newman. Experience-based navigation for long-term
localisation. The International Journal of Robotics Research, 32(14):1645–1661, 2013.

[13] Mark Cummins and Paul Newman. Fab-map: Probabilistic localization and mapping in
the space of appearance. The International Journal of Robotics Research, 27(6):647–665,
2008.

[14] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir
Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning
optical flow with convolutional networks. arXiv preprint arXiv:1504.06852, 2015.

[15] Xiang Gao and Tao Zhang. Unsupervised learning to detect loops using deep neural
networks for visual SLAM system. Autonomous Robots, pages 1–18, 2015.

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[17] Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio Criminisi. Real-time rgb-d
camera relocalization. InMixed and Augmented Reality (ISMAR), pages 173–179. IEEE,
2013.

[18] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

[19] Abner Guzman-Rivera, Pushmeet Kohli, Ben Glocker, Jamie Shotton, Toby Sharp,
Andrew Fitzgibbon, and Shahram Izadi. Multi-output learning for camera
relocalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1114–1121, 2014.

[20] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[21] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks.
arXiv preprint arXiv:1612.01925, 2016.

[22] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004,
2016.

[23] Nathan Jacobs, Nathaniel Roman, and Robert Pless. Consistent temporal variations
in many outdoor scenes. In Computer Vision and Pattern Recognition (CVPR), pages
1–6. IEEE, 2007.

52

[24] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in Neural Information Processing Systems, pages 2017–2025,
2015.

[25] Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for camera
relocalization. In Robotics and Automation (ICRA), pages 4762–4769. IEEE, 2016.

[26] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Convolutional networks for real-
time 6-dof camera relocalization. In Proceedings of the International Conference on
Computer Vision (ICCV), 2015.

[27] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[29] Alexander Krull, Eric Brachmann, Frank Michel, Michael Ying Yang, Stefan Gumhold,
and Carsten Rother. Learning analysis-by-synthesis for 6d pose estimation in rgb-d
images. In Proceedings of the IEEE International Conference on Computer Vision,
pages 954–962, 2015.

[30] Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian, and James Hays. Transient
attributes for high-level understanding and editing of outdoor scenes. ACM Transactions
on Graphics (TOG), 33(4):149, 2014.

[31] Hyon Lim, Sudipta N Sinha, Michael F Cohen, and Matthew Uyttendaele. Real-time
image-based 6-dof localization in large-scale environments. In Computer Vision and
Pattern Recognition (CVPR), pages 1043–1050. IEEE, 2012.

[32] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense correspondence across scenes
and its applications. IEEE transactions on pattern analysis and machine intelligence,
33(5):978–994, 2011.

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European
Conference on Computer Vision, pages 21–37. Springer, 2016.

[34] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[35] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year, 1000km: The
Oxford RobotCar Dataset. The International Journal of Robotics Research (IJRR),
36(1):3–15, 2017.

[36] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

53

[37] Sven Middelberg, Torsten Sattler, Ole Untzelmann, and Leif Kobbelt. Scalable 6-dof
localization on mobile devices. In European conference on computer vision, pages 268–
283. Springer, 2014.

[38] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163,
2015.

[39] Peer Neubert, Niko Sunderhauf, and Peter Protzel. Appearance change prediction for
long-term navigation across seasons. In Mobile Robots (ECMR), pages 198–203. IEEE,
2013.

[40] David Nistér. An efficient solution to the five-point relative pose problem. IEEE
transactions on pattern analysis and machine intelligence, 26(6):756–770, 2004.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[42] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio Lopez.
The SYNTHIA Dataset: A large collection of synthetic images for semantic segmentation
of urban scenes. In CVPR, 2016.

[43] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and
Andrew Fitzgibbon. Scene coordinate regression forests for camera relocalization in
rgb-d images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2930–2937, 2013.

[44] Mike Smith, Ian Baldwin, Winston Churchill, Rohan Paul, and Paul Newman. The
new college vision and laser data set. The International Journal of Robotics Research,
28(5):595–599, 2009.

[45] Niko Sünderhauf, Sareh Shirazi, Feras Dayoub, Ben Upcroft, and Michael Milford. On
the performance of convnet features for place recognition. In Intelligent Robots and
Systems (IROS), pages 4297–4304. IEEE, 2015.

[46] Niko Sunderhauf, Sareh Shirazi, Adam Jacobson, Feras Dayoub, Edward Pepperell, Ben
Upcroft, and Michael Milford. Place recognition with convnet landmarks: Viewpoint-
robust, condition-robust, training-free. Proceedings of Robotics: Science and Systems
XII, 2015.

[47] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[48] Julien Valentin, Matthias Nießner, Jamie Shotton, Andrew Fitzgibbon, Shahram Izadi,
and Philip HS Torr. Exploiting uncertainty in regression forests for accurate camera

54

relocalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4400–4408, 2015.

[49] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid. Deepflow:
Large displacement optical flow with deep matching. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1385–1392, 2013.

[50] Wei Zhang and Jana Kosecka. Image based localization in urban environments. In 3D
Data Processing, Visualization, and Transmission, Third International Symposium on,
pages 33–40. IEEE, 2006.

[51] Tinghui Zhou, Philipp Krahenbuhl, Mathieu Aubry, Qixing Huang, and Alexei A Efros.
Learning dense correspondence via 3d-guided cycle consistency. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 117–126, 2016.

[52] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. View
synthesis by appearance flow. In European Conference on Computer Vision, pages 286–
301. Springer, 2016.

55

Приложение A

Рис. A-1: Distribution of pixel displacement magnitude on SYNTHIA: fraction of pixels
having corresponding ground truth magnitude

56

FlowMatchNet WarpNet

Per-image average EPE dependency on correspondence magnitude. Notice a "fracture"in
FlowMatchNet plot, which means that the model can not cope well with large

displacements. For WarpNet the plot does not have such a loss pattern, although mean
EPE slightly grows all the way from zero to large ground truth displacements. Therefore,
coarse-to-fine approach together with warping operations introduce strong regularization to

the model, making it grasp large pixels displacement.

EPE heat maps EPE heat map for SYNTHIA [42] validation sample. WarpNet grasps road
pixels better as well as pixels of small or thin objects such as a tree (these objects usually

have large displacements as they are closer to camera).

Рис. A-2: Comparison of FlowMatch and WarpNet on SYNTHIA dataset

57

(a)

(b)

58

(c)

(d)

Рис. A-3: WarpNet predictions on NCLT [10]: first row shows first and second image; second
row shows ground truth flow, masked prediction, prediction, endpoint error (EPE) magnitude
heat map (left to right). Largest errors are achieved on pixels corresponding to road (poorly
represented in training set as lower pixels are not hit by LIDAR), branches (ground truth is
imprecise as branches are thin and LIDAR resolution is finite) and moving objects (wrong
ground truth).

59

(a)

(b)

(c)

Рис. A-4: NCLT matches with WarpNet. Notice accurate matches between tree branches
in (a), road sign in (b). Ground is matched incorrectly in (c) because of large motion and
clutter; branches are still matched well.

60

(a)

(b)

(c)

(d)

(e)

Рис. A-5: KITTI matches with WarpNet. Moving objects motion is learned successfully
(accurate wheel-to-wheel correspondences in (a), (b), (c) and (e), door-to-door and roof-to-
roof in (d)). Motion of a road sign, which is relatively small, is predicted accurately in (e)

61

Рис. A-6: t-SNE visualization of conditions vectors on SYNTHIA. Eight-dimensional
conditions are extracted from validation samples and projected to 2D. Images labeled as
’dawn’, ’winter’, ’night’, ’rain’ form well-separated clouds, while ’summer’, ’spring’ and ’fall’
are mixed (these seasons are usually indistinguishable in urban environment). Although
labels were never shown during training, CondNet learns to cluster the set accordingly.

62

(a)

(b)

Рис. A-7: CondNet results on SYNTHIA [42]. The model learns to remember illumination
and weather conditions. Minor details (light in windows, clouds, road roughness) can not be
encoded into eight-dimensional vector, so errors are high in corresponding pixels.

63

Рис. A-8: CondNet results on Transient Attributes Database [30]. Each row represents one
validation sample. First two rows show pairs of images X1 and X2. Last row shows predicted
images (X1 under conditions from X2).

64

(a) Preliminary processing of both images with CondNet providing. Zero conditions are
applied. Input to FlowMatchNet is a pair of synthesized images with zeroed-out

environmental conditions.

(b) Injecting CondNet as a regularizer. Features extracted from images should not depend
on conditions, but only dependent on scene viewpoint. L2 penalty is introduced for

deviation of f(X2) from f(r(X2, c(X1))).

Рис. A-9: CondNet model in correspondence prediction

65

Приложение B

B.1 Data Augmentation

One known problem of complex models (in terms of number of parameters) is overfitting

to training data. The model is prone to learn not the hidden dependencies between input

and output, but rather memorize training samples. Figure B-1 shows an example of fitting

a polynomial to noisy data, where both input and target are one dimensional. The model

shown in green is perfectly fit to blue training points, having zero error. However, one can

judge that less complex model is “more reasonable”. Formally this means lower error on

validation samples (all points that lie on blue line and were never seen during training).

Рис. B-1: Overfitting to data: blue point show noisy observed data, blue line is a hidden
target function, green line is a model experiencing overfitting. The model has memorized
training samples, but is severely off in intermediate points.

66

As discussed above, deep neural networks have great number of parameters and are

therefore facing overfitting. Various methods are known to decrease this effect and make

models more robust. These include applying regularization penalties to model parameters,

performing cross-validation, introducing priors in Bayesian inference, making data augmentation

etc. Data augmentation in computer vision includes cropping, scaling, rotating images as well

as introducing noise, blur and other artificial effects.

In order to augment training data for optical flow tasks, same parameters should be

applied when augmenting input images and output flow. Below we are going to show how

flow values change when applying an affine transformations to both images. Notice that if the

same affine transformation T is applied to both images, then output flow change is described

in terms of T :

F new(Xnew
1 , Xnew

2) = gridnew(X2)− gridnew(X1) =

= T (grid(X2))− T (grid(X1)) = T (grid(X2))− grid(X1)) = T (F (X1, X2)) ,

where through grid(X) we denoted tensor that stores (i, j) coordinates for a corresponding

pixel of X in feature channels.

On the other hand, it is also possible to introduce different type of augmentation for

output flow when applying different transformations to input images. If transformation T1 is

applied to X1 and T2 is applied to X2, then explicit grid processing remains in the equation:

F new(Xnew
1 , Xnew

2) = T2 (grid(X2))− T1 (grid(X1)) .

Notice that in order to apply a transformation to image or flow map, grid construction

is still required, so computational complexity of the operation stays the same.

It is convenient to store grid tensor in form of matrix G = (x, y)W,H
x,y=1,1 of size 2 ×WH.

Then, rotation (R), scaling (S) and translation (Tr) can be applied in a matrix form:

Gnew = SRG+ Tr = T (G), (B.1)

T = Tr ◦R ◦ S,

67

R =

cosα − sinα

sinα cosα

 S =

s 0

0 s

 Tr =
(
trx try

)
.

Representing grid G in homogeneous coordinates (matrix 3 × Npixels), T becomes 2 × 3

transformation matrix and (B.1) is written as a single matrix multiplication: T (G) = TG,

T =


s cosα −s sinα trx

s sinα s cosα try

0 0 1

 .

In order to obtain a valid image, which has discrete grid of pixels, bilinear interpolation

should be done. To eliminate artifacts at the borders, we crop the resulting image.

68

B.2 Flow as classification problem

Inspired by recent methods in object detection [41, 33] we follow the idea of target space

discretization. The space of flow vectors is discretized into a small set of classes and the

model learns to predict both class label and adjustment to the fixed flow associated with

this class.

The model is again a fully convolutional neural network with two output branches. First

branch predicts class labels, having per-pixel softmax activation on D+ 1 neurons of the the

last layer, where D is a number of classes the space is split into. One extra neuron accounts

for non-matchable class. Second branch predicts adjustments to the flow vectors associated

with each class, having 2D per-pixel output values.

During training step, class prediction is penalized with cross-entropy loss function, while

only true class map is penalized with L2 loss. This means that the second branch is trained

to predict adjustments well only for true class. Those pixels for which correspondence vectors

fall under different class do not affect the branch, which allows more exploration inside that

class.

L
(
F,M, R̂, Ĉ

)
= λLcorresp

(
F,M, R̂

)
+ Lmatch

(
F,M, Ĉ

)
,

where Lcorresp

(
F,M, R̂

)
is an average over matchable pixels as in (3.10) and

`
(
Fi,j,Mi,j, R̂i,j

)
= ‖Fi,j − R̂

class(Fi,j ,Mi,j)
i,j ‖.

Lmatch

(
F,M, Ĉ

)
is a pixel-wise cross-entropy between true class(Fi,j,Mi,j) and Ĉ.

class(Fi,j,Mi,j) =

d : Fi,j ∈ ∆d Mi,j = 1

D + 1 Mi,j = 0

,

where subdivision ∆ = {∆d}Dd=1 is introduced.

FlowClassifNet results Various space subdivision are feasible to discretize 2D correspondence

space. In our experiments with FlowClassifNet we split output space of correspondence

69

vectors in a simple grid of 32 bins according to positions of each pixel in the second image.

Visualization of predicted class labels and resulting correspondence map are given in

Figure B-2 for two random samples from validation set. The figure also demonstrates how

different the predicted correspondence fields might be even when jointly forming good prediction.

Such diversity happens because each of the fields is responsible for only a small fraction of

the whole H ×W output and may predict arbitrary values in other regions. However, these

inharmonious predictions compensate each other when soft map assignment is performed.

Indeed, switching from hard to soft assignment slightly reduces validation endpoint average

error on SYNTHIA from 8.7 to 8.1. We use soft assignment in out experiments and put

results into Table B.1. FlowClassifNet performs worse than FlowMatchNet, having similar

structure and roughly the same number of parameters.

FlowClassifNet has 1 × 1 kernels on last convolutional layers, which models per-pixel

classification in a convolutional fashion. However, in commonly used classification networks

last layers encode extracted features in high-dimensional spaces (e.g. 2048 dimensions in

[28] and 4096 dimensions in [41]). In our setting, we solve the classification task for H ×W

(tens of thousands) pixels at once, which puts limits on memory and time usage. Because of

that, we do not go beyond 64 feature channels in our experiments, which might affect results

quality.

Inferior performance is also caused by harsh penalizing of those pixels which lie on the

border of class region. We To avoid this effect one might try defining soft distribution over

classes. However, our experiments didn’t show major improvement when defining probability

of the pixel to be in class inversely proportional to distance to the centroid of that class.

SIFT Flow FlowMatchNet WarpNet FlowClassifNet
16.2 6.0 3.2 8,1

Таблица B.1: Endpoint average error results. FlowClassifNet shows inferior performance.

70

FlowClassifNet prediction fields grid. Correspondence fields are drastically different,
although forming good prediction when voting. Such diversity happens because each of the

fields is responsible for only a small fraction of the whole output.

(a)

(b)
FlowClassifNet visualization on SYNTHIA. Left to right: ground truth correspondence

field, ground truth class labels, predicted correspondence field (soft voting), predicted class
labels

Рис. B-2: FlowClassifNet visualization

71

